The transition to ATSC 3.0

October 2019

Michael Guthrie
Technology Specialist
michael.guthrie@harmonicinc.com
Making the ATSC 3.0 transition

- The need for channel sharing
- ATSC 1.0 Channel Sharing
- ATSC 3.0 Channel Sharing
- The basics of statistical multiplexing
• ATSC 3.0 will require extensive channel sharing
• Most stations will need at least two shares: ATSC 1.0 and ATSC 3.0
• Bit rate agreements are difficult and often reflect a lack of knowledge of how statistical multiplexing works
• Fair agreements need to address time as well as rate
• The interconnection between stations is often overlooked until it's too late…..
 • The interconnection often drives both cost and video quality (for good or bad)
 • Reusing an ATSC 1.0 signal for ATSC 3.0 defeats the whole purpose of ATSC 3.0
 • Poor channel share implementations degrade quality and reduce useable channel count
How can we make ATSC 1.0 work for the nightlights?
ATSC 1.0 Channel Sharing

- The ATSC conversion is driven by channel sharing
- During each phase ATSC 1.0 will usually be the limiting factor
- The FCC requires that ATSC 1.0 coverage must retain 95% of the audience
 - Applies to the primary channel
 - This may eliminate some hosts if their coverage is less
- Most stations want to retain all of their existing channels
- ATSC 3.0 can (usually) carry more channels than ATSC 1.0
- Spreading shared ATSC 1.0 channels across several stations can optimize VQ
- A market wide approach is best
 - station pairing offers too little ATSC 1.0 capacity
- The ATSC 1.0 Nightlight will evolve as the 3.0 audience grows
MPEG 2 Efficiency Improvements

- MPEG codecs, MPEG2, AVC, HEVC all specify the decoder
- MPEG 2 encoders are still improving
- HD has improved more than SD
 - Within MPEG2
 - AVC and HEVC also favor higher resolutions
- MPEG 2 HD encoding efficiency is about double what it was in 1999
- Improvements generally fall into categories:
 - Codec, Statmux, Filtering
- Major leaps are rare, but there have been several:
 - Optimized Variable GOP (Codec)
 - Lookahead and multiple lookahead (Statmux & Filters)
 - MCTF (motion compensated temporal) (filter)
 - Single slice (codec)
- But….Most improvements are small but cumulative: 1% or 2% at a time
What bitrate do I need?

• There is no real answer!

• Basic parameters:
 • minimum
 • maximum
 • priority
 • total pool size / # of services

• The bitrate for a given quality level depends on:
 • Video format (1080i, 720p etc.)
 • Content: Sports, Entertainment, Film, Hand animated, Computer animated…
 • Your taste
 • The market size

• In ATSC 1.0 the number of channels considered to have acceptable quality (by their management) varies widely
 – Examples:
 • Small market channel share (3 way, 2 independent + Public TV): 3 HD + 7 SD
 • Large market (O&O): 2 HD + 5 SD (limited sports)
 • Large market (O&O): 2 HD + 2 SD (Sports on both HD’s)

• In the end the quality must be appropriate for the content
• It must serve the interests of the station(s) and the public
Making the ATSC 1.0 share work

• More stations = more opportunity to optimize the mix of channels on the 1.0 stations

• The primary HD channel shares represent opportunity for Public and Independent stations
 – These stations often don’t carry sports
 – Bitrate agreements are difficult, often its more productive to treat bitrates as a fallback
 – The primary agreement should allow optimization of the encoding system, i.e. maximize overall VQ first

• It is possible to fit two HD channels even with simultaneous sporting events
 – There are many examples from the spectrum auction
 – Controlling the rate of any accompanying SD channels is critical
 – HD sharing with HD is often more efficient than a mix of HD and SD

• Rather than try to specify SD bitrates, it is often better to treat them as equal, but with less priority than the primary channels
Things to consider in a contract

- Never specify a “minimum” bitrate. This = CBR
- Average is better
 - Average over what time frame?
 - Consider a day, or a week to allow for sporting events
 - Tools are available to log bitrates
 - It is possible to have deterministic average bitrates
 But letting the encoder decide often offers better performance
- Specifying equal settings is often more efficient than trying to specify bitrates
 - Equal settings should provide equal VQ if the encoder is well designed
 - The contract can contain language based on bitrates to settle disputes if necessary
- Split the channels into groups, settings for the primary channels, other settings for the secondary channels
- Bitrate logging with adjustment good faith agreement can allow higher quality for all
ATSC 3.0 Rollout
ATSC 3.0 transition over time

- The initial rollout period (2019 – late 2020)
 - Few 3.0 TV’s
 - Service is required to kick start the consumer market
 - Occasional UHD / HDR special programming will become available

- Full service (2021 2022)
 - Quality and services must clearly distinguish 3.0 as an improvement over 1.0
 - Network programming should be available 1080p HDR
 - SFN and OTT hybrid transmissions can improve quality and quantity of services

- Crossover
 - The number of 3.0 households will eventually crossover 1.0
 - MVPD’s will eventually carry 3.0 services
 - Some of the 1.0 stations will convert, placing new demands on the remaining nightlights
 - Eventually 1.0 service will be reduced as stations reach the 5 year timeout, assuming 3.0 is more profitable
PLP’s: A lot of choices

- **Physical Layer Pipes**
 - Use up to 4 PLP’s
 - Each PLP can have different modulation and bandwidth
 - The parameters for each PLP are chosen for specific services
 - Indoor, mobile, portable services require robust modulation
 - UHD or high channel count HD may require less robust modulation in order to carry enough bits
 - Single Frequency Networks may support different choices than a single transmitter
 - A robust PLP for service announcement can extend OTT availability

- A single PLP in the middle of the range will yield 24 to 26 Mb/s
• Assumptions:
 – 25 Mb/s
 – Stations transmit 1080p59.9
 – Statistical multiplexing is used
 – Capacity for a single transmitter will likely be 4 to 6 primary channels
 – 720p59.9 for some stations would increase this capacity

• In the initial rollout the goal is likely to replicate the primary ATSC 1.0 services
 – The goal should be to very quickly achieve better quality than the ATSC 1.0 services
 – This is the time to eliminate Interlace
 – Reusing the ATSC 1.0 transmission is only OK until there are TV's available

• UHD will be an issue
 – Useful bitrates for UHD are 2 to 3 times the 1080p rates
 – Typical transmitter configurations will not allow for UHD along with full carriage of 3 or 4 1080p59.9
Why you may need Hybrid sooner than later

- Some networks will have occasional UHD content as early as 2020
 - Consumer electronics manufacturers will advertise UHD TV’s
 - Local Electronics stores and chains will advertise with cooperative dollars
 - A shared transmitter will probably not have enough bandwidth for UHD, certainly not two
 - OTT delivery can provide the necessary bandwidth without equipment budget
- Many shared transmitters will not have space for secondary channels
 - These channels can be transmit OTT with **no** transmitter bandwidth
 - Secondary channels can be in HD when delivered via OTT
- Early adaptor consumers will set the tone for the rollout
 - Early adopters need to see a difference between ATSC 1.0 and 3.0
Hybrid Broadcast / Broadband

- A single Media Presentation Description (MPD) is used to signal A/V on broadcast and broadband
- The receiver can seamlessly switch between OTA and OTT
- OTT reception is only possible if OTA is present
- Examples of hybrid delivery of A/V streams:
 - Same service over broadcast and broadband but with different qualities (HD OTA, UHD OTT)
 - Enhanced tuning time
 - OTT error correction / recovery for OTA
 - Main service over broadcast: DVR, Pause, Start Over, Rewind OTT
About Statistical Multiplexing
Statistical Multiplexing

- Statistical Multiplexing is STATISTICAL
 - i.e. it’s not ALWAYS going to work the way you want
 - Constant Bitrate = Variable Quality
 - Variable Bitrate = Constant Quality
 - The actual instantaneous quality is determined by total pool complexity
 - The complexity varies continuously
 - It works because some channels have light complexity while others have high complexity
 - It doesn’t work when all channels have high complexity simultaneously
 - The more channels there are the more likely that the statistics will balance out for consistent quality
 - The quality will vary with time, one measure of quality is the percentage of time the picture is unacceptable
 - With few channels there is efficiency gain, but the quality will be more variable
Statistical Multiplexing

• The instantaneous bitrate for each channel is determined by the required bits to achieve the target quality
• The sum of the channel bitrates must equal a constant bitrate, otherwise null packets will be needed to fill between peaks
• The target quality is determined by:
 – Channels with equal priority should have equal quality
 – Channels with lower or higher priority will have adjusted quality, lower or higher
• It is possible to target a given bitrate, but the required bitrate is fundamentally determined by:
 – Video format: Pixels per second $H \times V \times FR$
 – HD uses fewer bits per pixel than SD, UHD less than HD…
 – Complexity: Motion \times Detail
 – Nearby pictures: scene, transitions, pan, flash, fade, camera shake, film registration
 – Noise: camera noise, film grain, existing encode artifacts
Statistical Multiplex Example
Statistical Multiplex Example

Video Bitrate Line Chart

Program 1 PGM1
Program 2 PGM2
Program 3 PGM3
Program 4 PGM4
Program 5 PGM5
Program 6 PGM6
About Bitrates

• Factors which determine video quality:
 – Maximum bitrate that’s available to a channel
 – Average bitrate (pool / channels)
 – The content present on the other channels

• In a large pool the quality is more closely related to the maximum bitrate than the average
 – Max = Pool – (sum of mins) OR the max setting, whichever is lower

• The average bitrate should be determined by the encoder, not forced upon the channel
 – Modern encoders are smart, they will balance the channels naturally
 – Forcing an average per program reduces overall video quality
 – But a forcing an average makes contracts easier to write

• The minimum bitrate has very little to do with quality
 – High minimum bitrates will degrade other channels more than they improve the target channel
 – If every stream has a high minimum it is no longer a statmux: it will be CBR
 – Overall quality is improved when there are more bits that can be “moved”
 – A good encoder has lookahead to ensure there are enough bits available around scene change and transitions

• HD requires fewer bits per pixel, but SD allows for higher statmux gain
<table>
<thead>
<tr>
<th>Column</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Date</td>
</tr>
<tr>
<td>B</td>
<td>Time</td>
</tr>
<tr>
<td>C</td>
<td>SL</td>
</tr>
<tr>
<td>D</td>
<td>NULL</td>
</tr>
<tr>
<td>E</td>
<td>GHOST</td>
</tr>
<tr>
<td>F</td>
<td>WXXX HD</td>
</tr>
<tr>
<td>G</td>
<td>WXXY HD</td>
</tr>
<tr>
<td>H</td>
<td>WXXX SD1</td>
</tr>
<tr>
<td>I</td>
<td>WXXY SD1</td>
</tr>
<tr>
<td>J</td>
<td>WXXY SD2</td>
</tr>
<tr>
<td>K</td>
<td>Total</td>
</tr>
</tbody>
</table>

Sample bitrate as Run (in Excel)
<table>
<thead>
<tr>
<th>Vertical</th>
<th>Horizontal</th>
<th>Aspect</th>
<th>Frame Rate</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1080</td>
<td>1920</td>
<td>16x9 (square)</td>
<td>24, 30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interlaced</td>
<td></td>
</tr>
<tr>
<td>720</td>
<td>1280</td>
<td>16x9 (square)</td>
<td>24, 30, 60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Progressive</td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>704</td>
<td>4x3, 16x9</td>
<td>24, 30, 60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Progressive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interlaced</td>
<td></td>
</tr>
<tr>
<td>480</td>
<td>604</td>
<td>4x3 (square)</td>
<td>24, 30, 60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Progressive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Interlaced</td>
<td></td>
</tr>
</tbody>
</table>

- Of the original A53 formats, only 3 are widely used
- 2 currently unused formats have promise for reintroduction
- 720p30 offers HD at half the current HD bitrates
- 480p30 offers clearer pictures for SD, but at similar bitrates
Final Thoughts
• The ATSC 3.0 transition will require unsanctioned cooperation between broadcasters
• The greatest challenge is going to be channel sharing
• Getting a station on the air in 3.0 is less of a challenge than keeping 1.0 service alive
• The challenges are legal as well as technical
• There is intense focus on legal agreements based on bitrates
• BUT continuity and quality of service are not defined just by bitrates
Thank You

MPEG 2 VQ: Making the Nightlight work