TV TRANSMITTER TECHNOLOGY: PAST, PRESENT & FUTURE

Martyn Horspool
TV Product Manager
GatesAir

2019 WBA Broadcasters Clinic

Connecting for the Future
1. THE PAST
WHO INVENTED TELEVISION?

• Early mechanical systems involved rotating wheels with holes and lights
• Poor picture quality, unreliable, no real future...

Scottish inventor, John Logie Baird with his mechanical television – March 1925

1925 – Image from Baird's TV system

John Logie Baird

1926: Image from Baird's Mechanical Television

Connecting for the Future
WHO INVENTED TELEVISION?

Baird’s Mechanical Television System

When was the Nipkow disk invented? Nipkow Disk was patented in 1884!
WHO REALLY INVENTED TELEVISION?

• The “real” inventor of modern television was a Mormon farm boy named Philo Farnsworth:

“As he plowed a potato field in straight, parallel lines, he saw television in the furrows. He envisioned a system that would break an image into horizontal lines and reassemble those lines into a picture at the other end. Only electrons could capture, transmit and reproduce a clear moving figure. This eureka experience happened at the age of 14”

(source: http://www.technologyreview.com/featuredstory/400802/who-really-invented-television/)
EVOLUTION OF TELEVISION

3” TV, 1928, Resolution 40 lines, 20fps
Cost: **Priceless**

Australian electronics company **C Seed** is releasing the world’s largest outdoor TV in 2020
301” Diagonal Screen
Cost: **$1.5 million**

“Retail price comes at around 1.5 Million USD. Orders can be placed now with delivery time mid-2020”

OTA TV IS < 100 YEARS OLD

1928 - Philo Farnsworth demonstrates electronic television @ 20fps.

1928 – TV Broadcasting begins from the GE factory in Schenectady, NY, under the call letters W2XB – 48 Lines - was high resolution then!

1936 - RCA demonstrates 343 interlaced lines at 30fps

1941 - FCC adopted NTSC television std. 525 lines at 30fps. B&W of course!

1953 - First color TV broadcasts in USA

1996 - First ATSC DTV broadcasts in USA – WRAL

2007 - Analog switch-off in USA

2016 – June 29th, WRAL begins Broadcasting ATSC 3.0
50 YEARS OF UHF-TV TRANSMITTER EVOLUTION

1969 55kW Analog Klystron Tx
1980 55kW Analog Klystron Tx
1993 30kW IOT Tx
1995 5kW Analog SS UHF Tx
1998 14kW SS Tx
2004 30kW MSDC IOT Tx
2004 4.7kW SS Tx
2009 12.3kW SS Tx
2014 SS Tx
2019 38kW SS Tx
Tx technology - significant trends:
- Vacuum tube to solid-state technology
 - 100% complete all power levels Done!
- Much higher electrical efficiency
 - Reduced operating costs/TCO Ongoing
- Higher redundancy/reliability Ongoing
- Reduced maintenance Ongoing
- Higher power density Ongoing
- Improved serviceability Ongoing

Earl McCune, CPI with an MSDC Klystron
Circa 1996
Q: Which of these Devices was NEVER used in a Harris/GatesAir Tx?
2. WHAT DIDN’T WORK OUT SO WELL?

"I haven’t failed. I’ve just found 10,000 ways that won’t work."

Thomas Edison
Success is not final, failure is not fatal: it is the courage to continue that counts.

Winston Churchill
(PS)2

- A HV Beam Supply with Pulse Step Modulation (using IGBT’s)
- 97% efficiency of Power Supply
- Soft start and fast shut off
- Eliminates Crowbar for IOT
- Statement in 1995 NAB Paper:

 "Today with (PS)2, oil-filled high voltage beam supplies, external voltage regulators, a.c. step-start contactors, and resettable circuit breakers are relics of the past"

- However, It appears no (PS)2 systems ever shipped...
IN MEMORIUM… (2)

• The Diacrode

- The Au60D Diacrode Transmitter by Acrodyne - 1995
- Acrodyne pioneered Diacrode transmitter technology and shipped many
- After a few years however, tube life never lived up to expectations
IN MEMORIUM… (3)

- Silicon Carbide Transistors

- Harris Broadcast Division and Westinghouse
- SiC devices promised excellent linearity and efficiency
- Much higher junction temperatures
- 500W transistor, built into 1.5kW power amplifier modules
- A 1.5kW transmitter was deployed at KCTS
- Incorrect turn-on procedure destroyed every transistor!
- Poor device yield and extremely high cost were the final nail in the coffin....
Multi-Step Power Amplifier – NEC (late 90’s)

- Class C amplifiers, switched to build the modulation envelope
- Claimed 50% DC to RF efficiency
- None shipped...
3. THE PRESENT
WHAT DO CUSTOMERS WANT?

- Modern Technology...
- Efficiency...
- Serviceability...
- Reliability...
- Performance...

Transmitter

Connecting for the Future
MODERN TRANSMITTER TECHNOLOGY

• Modern Technology
 • Microprocessor's, SDRAM, FPGA’s, etc.
 • Increased processing speed/power, lower cost than discrete parts, much smaller size
 • Automated pre-correction techniques – far less knobs to adjust

• Surface Mount Technology (SMT)
 • Fast automated PC board production
 • Less cost, higher reliability

• Doherty PA’s
 • Higher efficiency, lower energy costs

• Mechanical Design
 • Modern techniques in manufacturing
 • Ease of Assembly & Servicing
HOW MANY MICRO’S ARE IN THIS TRANSMITTER?

Can anyone guess?

- GatesAir Liquid Cooled UHF – ULXTE-60
- Power Output 38kW Pre-Filter
- Number of PA’s = 60
- Number of PA power supplies = 60
- Dual exciters

And the answer is...

- Number of Micro’s = 129
EXCITER PC BOARD WITH SMT PARTS

XTE Exciter Modulator Board - Modern architecture and devices:

Micro-Processor:
 Freescale 1.0 GHz Quad ARM Cortex™ A9 core 2GB DDR3-1066
 uSD Card Slot – 32GB

FPGA 1:
 Xilinx: 254,200 6-input LUTs, 508,400 Flip flops
 28,620Mb Block RAM
 1540 DSP Blocks
 External Memory
 2 – 128Mx16 DDR3L
 2 – 1Mx18 SBSRAM

FPGA 2:
 Xilinx Kintex7
 External Memory
 2 – 128Mx16 DDR3L

Q: How many layers in this PCB?
A: 16 Layers
DOHERTY AMPLIFIER TECHNOLOGY

• The Doherty Amplifier was invented when exactly?
 • In **1936** by William H. Doherty using tube amplifiers

• Technique involves splitting signal into 2 paths
 • **Carrier amplifier** for the lower power part of the waveform
 • **Peaking amplifier** for the peaks of the waveform

• **Advantage** – Higher efficiency with complex waveforms (>50% at board level)

• **Disadvantage** – Bandwidth limitations due to \(\frac{\lambda}{4} \) matching network
BLF888E Key Features (from data sheet):

- Asymmetrical Doherty
- 50 Volts
- 150W OFDM TV Average Power (25% higher)
- Pallet Efficiency OFDM ~ 52% top 53%
- Gain 17dB
- Doherty back-off (peak/main) 7.96dB
- Excellent ruggedness (VSWR > 40:1)
- Three Doherty designs cover all UHF Band
- One RF PA covers the USA post-repack band
ASYMMETRICAL 2-STAGE DOHERTY

- Asymmetrical Doherty optimizes system efficiency towards higher Peak to Average Power ratio’s such as in OFDM modulation (e.g. ATSC 3.0), which is ~8dB
- PAR calculation for symmetrical device:
 \[= 20 \times \log(1 + \text{peak/main}) = 20 \times \log(1 + (1/1)) = 6.0\text{dB}\]
- PAR calculation for asymmetrical device:
 \[= 20 \times \log(1 + \text{peak/main}) = 20 \times \log(1 + (1.5/1)) = 7.96\text{dB}\]
- Device average power difference (asymmetrical vs. symmetrical):
 \[= 10 \times \log(2.5/2) = 10 \times \log(2.5/2) = +0.97\text{dB (+25%)}\]
Early Generation PA Cold Plate
(ULX models)

Aluminum plate is milled and a slot machined into it. Copper pipe is press-fit into slot, epoxied and refinished smooth. Costly to make and restrictive flow.

New Generation PA Cold Plate
(New GatesAir models)

Lower aluminum plate is machined with a wide slot for the coolant. A top plate made of the same material is then “Friction Stir Welded” to the main plate. Advantage: same material for weld, strong and reliable.
EFFICIENCY IMPROVEMENTS

• AC to RF efficiency improvements in TV transmitters date back to before 1981 – Example Mod Anode Pulser in analog klystron transmitters. A 20% reduction in power consumption was achieved.

• Many other advances have been made over the years:
 • **Improved power supplies:** 80% AC to DC efficiency used to be considered excellent but modern switch-mode power supplies reach 96% efficiency.
 • **Improved high-power transistors:** more power and gain per device and more efficient
 • **Improved amplifier techniques:** Doherty, Envelope Tracking
 • **Improved air-cooling systems:** Variable-speed fans
 • **Liquid-cooling** for high power solid state – take the waste heat outside, reduce HVAC costs
 • **Better pre-correction** techniques – allows power amplifiers to be operated closer to saturation
GATESAIR UHF TX ATSC EFFICIENCY COMPARISON

Includes IOT Systems

- **DiamondCD**: 17-19%
- **Atlas ATSC**: 18-19%
- **Maxiva ULX**: 26%
- **SigmaCD**: 27-29%
- **PowerCD**: 37-41%
- **Maxiva ULXT**: 35-38%
- **Maxiva ULXTE**: 38-42%

From Diamond to ULXTE > 60% AC Power Savings

Connecting for the Future
Power supplies have improved in efficiency a lot. Plug-in air-cooled power supplies:

- Efficiency ~ 96%
- Power factor > 0.98
- MTTF 450,000 hrs.
- Service life > 10 years
- Efficient enough to justify using in liquid-cooled transmitters
- Shipped thousands in FM & TV transmitters

Power Supply Efficiency

- **3.5kW Power Supply**
- Weight 4.8lb.
23 YEARS OF ATSC EXCITERS

- **CD-1**
 - 1996
 - No Adaptive Correction

- **CD-1A**
 - 1999
 - Linear Adaptive Correction only

- **Apex (Classic)**
 - 2003
 - Full Adaptive Correction

- **Apex M2X**
 - 2008
 - Full Adaptive Correction
 - S/W Defined Modulation
 - Supports most modulations

- **XTE**
 - 2016
 - Full Adaptive Correction
 - S/W Defined Modulation
 - Smaller
 - Added ATSC 3.0
 - Stores 2 modulations
FLOOR SPACE & VOLUME

Old DTV Tx
12kW

Area: 52.95 ft²
Volume: 317.7 ft³

New DTV Tx
12.8kW

28% of size
27% of volume
4. THE FUTURE
FUTURE TRENDS (INCLUDES “WISH-LIST” ITEMS...)

Future trends & ideas may include:

• Higher Power RF devices
 • Already in development

• New RF device technologies?
 • What about GaN RF devices?
 • What happened to SiC devices?

• Even higher AC-to-RF efficiency
 • Envelope Tracking / Drain Modulation
 • New techniques being evaluated
A Study and Comparison of Efficiency Enhancement Techniques for RF Power Amplifiers

April 12, 2011
NAB Show 2011

FUTURE TRENDS (INCLUDES “WISH-LIST” ITEMS...)

Future trends & ideas may include:

• More automated set-up & operation
 • Auto-optimization, Auto power calibration
• Zero maintenance?
 • Well, reduced maintenance...
• Self fault-diagnostics, trend analysis...
 • Transmitter orders parts that are expected to fail...
• Outdoor transmitters (no building required)
HOW LONG WILL OTA TV BROADCAST EXIST?

• 0 - 10 Years – OTA still going strong
 • ATSC-1 to ATSC 3.0 transition, complemented by 5G Broadcast
 • More spectrum juggling? Auctions 😊
 • OTT (Over-the-top, or delivery of television and film content by internet), will expand given the success of Netflix and others

• 10 - 20 Years – Still around...
 • ATSC 4.0 + 6G, 16K Resolution...
 • Cable disappears...

• 20 - 50+ Years???
 • Mars has its own TV network
 • No need for Broadcast! Implanted brain sensors and ESP take over...

• Question: How long will RF be around?...Forever!*
 (* At least for another 10^{126} Years)
WHAT TO LOOK FOR IN A NEW EXCITER?

• As “future-Proof” as possible
• Software-defined modulation
 • Allows simple and fast updating
• Is it ATSC 3.0 Ready?
 • Store 2 Modulations at same time
 • Redundant IP Transport Inputs
• High-performance using Adaptive Correction
• Internal GPS Receiver vs. External
• Internal UPS or battery back-up
 • Avoids boot-up time after short power outage

Q: Which of these definitely cannot operate with ATSC 3.0?
THANK YOU!

Martyn Horspool
TV Product Manager
GatesAir

2019 WBA Broadcasters Clinic

Connecting for the Future