

UHF Broadband Pylon Antenna Technology

PRESENTED BY Nicole Starrett

Pylon Antennas

- Term coined by RCA
- Top mounted slotted coaxial antenna
- Long, thin, round structures
- Smaller in size and less wind load than other broadcast antennas
- Fewer parts/connections
 - Simplicity = Reliability!

Just a "little bit of paint" is enough to maintain...

Pylon Antennas

• One disadvantage: inherently narrow bandwidth

$$\% bw = \frac{f_{h-}f_l}{f_0} x100$$

- Natural bandwidth: 1-2% at UHF
- For most applications usage is only considered for single channel operation

For Today's Presentation:

- Method to increase the bandwidth of a slotted coaxial antenna requiring external feedlines
- Method to reduce the impact of external feedlines on the azimuth pattern

Corporate Feed Networks – Phase Cancellation

• The total reflection coefficient of multiple loads fed in parallel is the summation of the individual loads each with a phase offset

$$\Gamma_{IN} = \frac{\sum_{p=1}^{n} \Gamma_{A_n} e^{-j2\pi \phi_{l_n}}}{n}$$

• Changing the phase between loads can provide impedance cancellation

Corporate Feed Networks – Phase Cancellation

- Phase cancellation is done through a corporate feed network
- Common practice in broadband panel antenna
 - Many loads fed in parallel
 - Many power dividers and feedlines
- How can this be applied to slotted coaxial antennas?
 - All loads fed in series

Multi-Sectional Slotted Coaxial Antennas

- How can we fix the bandwidth limitation of pylon antennas?
- Apply phase cancelation similar to panel antennas
- Split antenna into multiple sections
- Feed each section with separate feedline from common power divider – single input
- Example:
 - 24-layer antenna split into 3 center fed sections
 - Each section is center fed with an external feedline
 - 9 locations to apply phase offset
 - Limited to side mounted antennas
 1

Multi-Channel Top Mounted Antennas - Stacks

- Historically top mounted multi-channel pylons are single channel antennas structurally stacked
- Each are center fed by a harness
 - Mechanically end fed
 - Electrically center fed

Phase offset between top and bottom half by shifting the harness feed

Multi-Channel Top Mounted Antennas - Stacks

- Disadvantages:
 - Twice the height of single antenna
 - TL feeding top antenna affects the pattern of the lower antenna

T/L Feeding **Top Antenna** 9

Circularity Improvement

• Accomplished by adding dummy cylindrical lines around the antenna instead of a single line

Sectionalizing a Top Mount Pylon Antenna

- Create a dual harness design to take advantage of phase cancelation
- Add dummy TL to improve circularity
- Example:
 - 32-layer split into two center fed 16-layer sections
 - Harnesses fed by power divider below tower top
 - One harness feeds bottom antenna section from bottom
 - Other harness feeds top antenna section from top
 - Top and bottom antenna sections structurally attached by a flange
 - 6 locations to apply phase offset operating bandwidth

BB Pylon – Determining Theoretical Bandwidth

- Dual harness 32-layer example, 2-level/6-point phase offset
- Using equation along vith appropriate phase rupout vs

Trusted for Decades. Ready for Tomorrow.

11

 $\Gamma_{IN} = \frac{\sum_{p=1}^{n} \Gamma_{A_n} e^{-j2\pi \phi_{l_n}}}{\sum_{p=1}^{n} \Gamma_{A_n} e^{-j2\pi \phi_{l_n}}}$

BB Pylon – Theoretical Bandwidth

- This example provides a theoretical maximum bandwidth for the design
- Assumptions:
 - All impedances at point A are identical
 - All materials are perfect, doesn't account for material/manufacturing tolerances
 - Typical steel pipe 12% tolerance on wall thickness
 - Compounding 1.05 to 1.2:1 VSWR offset at each layer
 - No impedance contribution at power splitting points
- Actual product bandwidth will be reduced from theoretical ma

BB Pylon – Dual Harness Practical Application

- Theoretical design implementation
 - First BB pylon designed and manufactured for channels
 26 29
 - Service Omaha Nebraska
 - 32-layer, dual harness design
 - Measured usable bandwidth of 5.4% for max VSWR of
 1.15:1
 - 75% of the calculated theoretical maximum rule of

Expanding Application for Broader Bandwidth

- Previous dual harness design utilized 1 of the 4 external T/Ls
- Using the other 3 allows for more feed points
- More feed points = more opportunities for phase cancellation
- More phase cancellation broader operating bandwidth One Active T/L All Active T/Ls

BB Pylon – Quad Tee Theoretical Application

- Quad tee design
 - 32-layers split into 4 center fed sections each fed with an input tee
 - Sections are structurally attached by flanges
 - 2-level/12-points of phase offset used to broaden operating bandwidth

Quad BB – Determining the Theoretical Bandwidth

- Quad tee design/example
 - 2-level/12 points of phase cancellation theoretical analysis
 - Using equation along with appropriate phase run out vs

Trusted for Decades. Ready for Tomorrow.

16

 $\Gamma_{IN} = \frac{\sum_{p=1}^{n} \Gamma_{A_n} e^{-j2\pi \phi_{l_n}}}{\Gamma_{A_n} e^{-j2\pi \phi_{l_n}}}$

Conclusion

- High power top mounted pylon broadcast antennas can be used for broadband multi-channel applications
- Accomplished by applying multi-point phase cancellation
- External transmission lines used to improve the azimuth pattern circularity are also used to feed each section of the antenna
- New technology provide tegnative to
 - Simple

broadband panel

• Reliable

- solutions
- Low wind load
- Cost effective

Dual Harness design: proven, 2 systems shipped so far Quadraeedesign?improcess, more to come!

THANKS FOR YOUR TIME! ANY QUESTIONS?

Dielectric

Dielectric.com f ♥ Ø in ₪