FCC Method of Moments

Licensing AM Directional Antenna Systems

The Task

Comply with Construction Permit

 Certify correct antenna location
 Certify compliant pattern shape
 Certify compliant pattern size

Prepare FCC "302"

Propose Verifiable Operating Parameters

Classic AM "Proof"

Construction Permit Requires – <u>Un-attenuated</u> Inverse Field

Field Measurements Provide – Attenuated Inverse Field

Need to Determine Ground Conductivity – Build and measure a reference antenna

Classic AM "Proof"

- Establish Pattern Shape and Size
 - Measure directional antenna fields
 - Apply ground conductivity correction
 - Compare results to construction permit
 - Adjust phasor controls
 - Repeat as necessary...
 - Perhaps hundreds of field measurements

A Time (and Money) Consuming Process

Classic "AM " Proof

Pattern Shape

A function of individual tower contributions
Antenna monitor and sampling system

Antenna Monitor Parameters

- A "snapshot" on the last day of adjustment
- For reference, absolute value means little
- Filed with FCC "302" License Parameters

Classic AM "Proof"

Long Term Maintenance – "Periodic" License Parameter Readings – "Periodic" Monitor Point readings

Future Antenna System Changes

- More field measurements
- Reference original ground conductivity
- More repeat as necessary...

Could This Cumbersome Process be Improved?

FCC Method of Moments

PRM 08-228 Second Report and Order – Originally FCC MM 93-177 - Originally Proposed in 1991 Hatfield and Dawson duTreil, Lundin & Rackley Lahm, Suffa & Cavell Moffet, Larson & Johnson Silliman & Silliman Available for Use in Filings Early in 2009

Applicable to Engineering Problems

 Acoustics, Fluids, Mechanics
 Electromagnetics

Also Known as:

- Boundary Element Method
- Finite Element Method
- Finite Difference Method

From "Wikipedia":

- a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in *boundary integral* form).
- In electromagnetics, the more traditional term "method of moments" is often, though not always, synonymous with "boundary element method"

In Plain English:

- Take a large complicated problem
- Cut it up into small, simpler pieces
- Solve the pieces (perhaps simultaneously)
- Recombine the solutions

The Numerical Electromagnetics Code – Lawrence Livermore National Laboratory

Continuous Current

Segmented Current

NEC Modeled Antenna

¼ Wave Vertical
"Perfect" ground
10 Segments
Color indicates currents

NEC Modeled Antenna

"Wire Frame" patterns Polar plots Antenna gain Drive Point Impedance about 36 j0 ohms

NEC Modeled Antenna

5/8 Wave Vertical Note Skywave Lobes

Drive Point Impedance about 205 – j613 ohms

Back to "The Task"

Consider a Non-Directional "302"
 Determine Location: USGS Map
 Determine Pattern Shape
 Defined by geometry in horizontal plane
 Defined by formula in vertical plane

$$f(\theta) = \frac{\cos(G\sin\theta) - \cos G}{(1 - \cos G)\cos\theta}$$

(FCC Rules 73.160)

NDA Pattern Size

Un-attenuated Field (specified in mV/m)
 Difficult to directly measure

Proportional to Power (in Watts)
 Difficult to directly measure

Proportional to Base Current (in Amperes) – Easily measured if base impedance is known

NDA Base Impedance

Determined by:

- Tower height, cross-section, material
- Base Insulator, lighting chokes
- Isocouplers, stray reactance, etc.

Measure Impedance – Not expected to change under power – Required base current can be calculated

NDA FCC "302"

Location – coordinates from USGS Map
 Pattern Shape – geometry and formula
 Pattern Size – calculated base current

We have obtained the required technical information to prepare the license application without ever actually turning on the transmitter.

Back to "The Task"

FCC Method of Moments for DA's

- Modeling the directional array
- Verifying the mathematical model
- Establishing operating parameters
- Sampling system requirements
- Long term maintenance
- Additional FCC requirements

Modeling

NEC Model

- Mathematical description of array
- Excite each tower, "float" all others
- Create a tower array impedance matrix

Physical Array

- Measure each tower, "float" all others
- Characterize any extra "stuff"
- "Massage" the Model

GEOMETRY Wire coordinates in degrees; other dimensions in meters Environment: perfect ground									
wire	caps	Distance	Angle	Z	radius s	segs			
1	none	0	0	0	.29	10			
		0	0	84.6					
2	none	181.2	120.2	0	.29	10			
		181.2	120.2	84.6					
3	none	366.4	116.6	0	.29	10			
		366.4	116.6	84.6					
4	none	123.8	213.6	0	.29	10			
		123.8	213.6	84.6					
5	none	201.7	144.9	0	.29	10			
		201.7	144.9	84.6					
6	none	375.6	130.1	0	.29	10			
		375.6	130.1	84.6					
7	none	90.	176.7	0	.29	10			
		90.	176.7	84.6					

IMPEDANCE										
norma	normalization = 50 .									
freq	resist	react	imped	phase	VSWR	S11	S12			
(KHz)	(ohms)	(ohms)	(ohms)	(deg)		dB	dB			
source = 1; node 1, sector 1										
1,180.	33.353	-7.1002	34.101	348.	1.5521	-13.297	20817			

Model Impedance for all towers: 33.4 –j7.1 Ohms Measured Impedance for tower 1: 39.1 +j60.2 Ohms *Not Acceptable*

With Series Inductance

$$Zatu = Rb + jXb + jXls$$

With Shunt Capacitance

$$Ratu = \frac{(Rb * Xcs^{2})}{(Rb^{2} + (Xb + Xcs)^{2})}$$
$$Xatu = \frac{jXcs * (Rb^{2} + Xb^{2} + Xb * Xcs)}{(Rb^{2} + (Xb + Xcs)^{2})}$$

Change Velocity of Propagation Slower velocity = taller tower

> Measured Impedance for tower 1 39.1 +j60.2 Ohms

Model Impedance for Vp of 95.3% (105.2% height) 39.1 +j13.8 Ohms

Resistance is now Acceptable

GEOMETRY

Wire coordinates in degrees; other dimensions in meters Environment: perfect ground

wire	caps	Distance	Angle	Z	radius	segs
1	none	0	0	0	.29	10
		0	0	88.8		
2	none	181.2	120.2	0	.29	10
		181.2	120.2	88.5		
3	none	366.4	116.6	0	.29	10
		366.4	116.6	88.2		
4	none	123.8	213.6	0	.29	10
		123.8	213.6	88.		
5	none	201.7	144.9	0	.29	10
		201.7	144.9	88.6		
6	none	375.6	130.1	0	.29	10
		375.6	130.1	88.2		
7	none	90.	176.7	0	.29	10
		90.	176.7	90.2		

Number of wires curre	nt nodes	= 7 s = 7	C					
		minim	um	max	kimum			
Individual wire	s r	wire	value	wire	value			
segment length		4	8.8	7	9.02			
radius		1	.29	1	.29			
ELECTRICAL DESCRIPTION Frequencies (KHz) frequency no. of segment length (wavelengths) no. lowest step steps minimum maximum 1 1,180. 0 1 .0244444 .0250556								
Sources source node	sector	maaniti		phase	+1100			
1 1	1	1.		0	type voltage			

Lumped loads										
		resistance	reactance	e inc	luctance	capacita	nce passive			
load	node	(ohms)	(ohms)	(mH	I)	(uF)	circuit			
1	1	0	0	0		0	0			
2	11	0	-10,000.	0		0	0			
3	21	0	-10,000.	0		0	0			
4	31	0	-10,000.	0		0	0			
5	41	0	-10,000.	0		0	0			
6	51	0	-10,000.	0		0	0			
7	61	0	-10,000.	0		0	0			
	IMPEDANCE normalization = 50.									
freq	res	sist react	imped	phase	VSWR	S11	S12			
(KHz)	(oł	nms) (ohms)	(ohms)	(deg)		dB	dB			
sourc	e = 1;	node 1, sect	tor 1							
1,180	. 39	.052 13.775	41.41	19.4	1.4853	-14.187	16884			

CURRENT rms Frequency = 1180 KHz												
Input power = .0113867 watts												
Effic	Efficiency = 100. %											
coord	linates	in degrees										
curre	ent			mag	phase	real	imaginary					
no.	Х	Y	Z	(amps)	(deg)	(amps)	(amps)					
GND	0	0	0	.0170758	340.6	.0161033	-5.68E-03					
2	0	0	8.88	.0170977	338.6	.0159227	-6.23E-03					
3	0	0	17.76	.0166592	337.4	.0153845	-6.39E-03					
4	0	0	26.64	.0158121	336.5	.014499	-6.31E-03					
5	0	0	35.52	.0145774	335.7	.0132834	-6.E-03					
6	0	0	44.4	.012979	335.	.0117601	-5.49E-03					
7	0	0	53.28	.011045	334.3	9.96E-03	-4.78E-03					
8	0	0	62.16	8.8E-03	333.8	7.9E-03	-3.89E-03					
9	0	0	71.04	6.28E-03	333.2	5.61E-03	-2.83E-03					
10	0	0	79.92	3.46E-03	332.7	3.08E-03	-1.59E-03					
END	0	0	88.8	0	0	0	0					

Adjust Tower Impedance Matrix - "Massage" model to agree with values measured at the ATU output Adjust model height (velocity of propagation) Add lumped feed inductance (series) Compensate for base insulator capacitance - Repeat for each tower in array An iterative process

FCC Requirements

Only arrays with series-fed elements

At least 1 segment per 10 degrees height

 Modeled radii between 80% and 150% of circle of circumference equal to sum of sides

 Modeled height between 75% and 125% of physical tower height

FCC Requirements

 Tapered towers may be modeled as a series of stepped cylinders (wedding cake)

Actual tower spacings and orientation must be used in the model
 This needs to be confirmed by a surveyor

Lumped series inductance limited to 10 uH

- Lumped shunt capacitance limited to 250 pF

FCC Requirements

 Other base region components (lighting chokes, etc.) must be specifically measured and included in the model

 Measured impedance matrix must agree with moment method model within +/- 2 ohms or +/- 4%, which ever is greater

Two turn lightning loops placed in tower feeds (all 7 towers)

Loops measured between j33.9 and j46.6 Ohms (4.6 – 6.3 uH)

Tower	Msd	Msd	Msd Feed	Calc	Model	Model	Model	Model	Model	Model
	R	Х	X	X	Height	% of 84.6	R	R % dev	X	X dev
1	39.1	60.2	40.3	19.9	88.8	<u>105.2</u>	39.1	-0.12	13.8	-6.15
2	39.8	61.0	44.5	16.5	<mark>88.5</mark>	104.9	39.8	-0.09	11.6	-4.89
3	38.7	50.0	33.9	16.1	<mark>88.2</mark>	104.5	38.6	-0.20	9.8	-6.26
4	37.6	45.8	34.8	11.0	<mark>88.</mark> 0	104.3	37.6	-0.05	8.3	-2.67
5	39.7	60.2	46.6	13.6	<mark>88.6</mark>	105.0	39.6	-0.17	12.0	-1.56
6	38.7	43.2	38.1	5.1	<mark>88.2</mark>	104.5	38.7	0.03	10.0	4.92
7	39.0	58.5	38.6	19.9	90.2	106.9	39.0	-0.12	20.9	0.94

Model R's now within 0.1 Ohm of measured R's Model tower heights at 104% to 107% of actual Model lumped inductance less than 10 uH

Modeling

Pattern Shape Defined by Formula

$$E(\phi,\theta)_{theo} = \left| k \sum_{i=1}^{n} E_i * f_i(\theta) \angle \left(S_i \cos \theta \cos(\phi_i - \phi) + \varphi_i \right) \right|$$

(FCC Rules 73.150)

The Sum of Individual Tower Fields

 Field ratio and phase for each tower
 Specified in construction permit

Modeling

Measuring the Tower Field is Difficult

 As with NDA, measure currents, however...

Establishing Tower Drive Impedances in Directionals is Very Difficult

Impedance is really "Volts-per-Ampere"
 Tower drive impedance is a summation
 Self-impedance plus other "volts-per-ampere"

Modeling

Credit to Jerry Westburg:

– "Matrix Method for Relating Base Current Ratios to Field Ratios of AM Directionals"
– IEEE Trans. On Bcstg. V 35 #2, June, 1989

Calculate Drive Impedances and Currents

 Verified NEC mathematical model
 Field ratios from construction permit

Normalize phase (111.1 – 5.2), Tower 7 Phase = $+105.9^{\circ}$ Ratio current (26.2662 / 27.9853), Tower 7 Ratio = 0.939

MEDIUM WAVE ARRAY SYNTHESIS FROM FIELD RATIOS

	field ratio		
tower	magnitude	phase	(deg)
1	.438	-6.9	
2	1.	0	
3	.523	16.7	
4	.418	64.9	
5	.99	99.5	
6	.549	122.	

VOLTAG	ES AND CURREN	ITS – rms			
source	e voltage		current		
node	magnitude	phase (deg)	magnitude	phase	(deg)
1	246.145	333.3	3.69944	.1	
11	415.624	17.3	7.85442	5.5	
21	184.362	23.4	4.18681	21.5	
31	38.5047	339.6	3.44322	65.1	
41	56.0734	45.7	8.02852	100.	
51	13.2224	329.3	4.43341	121.8	
Sum of	square of sc	ource currents	s = 378.234		
Total	power = 5,000). watts			

Day Pattern - 50 KW.										
Tower	Theo.	Theo.	Model	Model	Model	Model	Ant. Mon.	Ant. Mon.		
	Field	Phase	R	Х	Current	Phase	Ratio	Phase		
(Ref) 1	1	0	50.323	35.981	27.9982	5.2	1.000	0.0		
7	0.894	109.2	15.269	4.6807	26.2882	111.1	0.939	105.9		
Night Patt	Night Pattern - 5 KW.									
Tower	Theo.	Theo.	Model	Model	Model	Model	Ant. Mon.	Ant. Mon.		
	Field	Phase	R	Х	Current	Phase	Ratio	Phase		
1	0.438	-6.9	59.424	-31.339	3.69731	0.1	0.471	-5.4		
(Ref) 2	1	0	51.818	10.779	7.85258	5.5	1.000	0.0		
3	0.523	16.7	44.009	1.4782	4.18673	21.5	0.533	16.0		
4	0.418	64.9	0.8838	-11.147	3.44338	65.1	0.439	59.6		
5	0.99	99.5	4.0698	-5.6732	8.03095	100	1.023	94.5		
6	0.549	122	-2.6455	-1.3779	4.43277	121.8	0.564	116.3		

Operating Parameters Calculated!

CP pattern versus NEC generated pattern

CP pattern versus NEC generated pattern

DA FCC "302"

Location – from Surveyor
 Pattern Shape – Method of Moments
 Pattern Size – calculated CP current

We have obtained most of the required technical information to prepare the license application without turning on the transmitter. *But, we still need to tune up the phasor...*

Tune-up:

Day, 2 towers - about 4 hours
Night, 6 towers - about 4 days
More fussing required at ATU's
Some very low tower drive impedances

Measurements to characterize the array
Time to "massage" the model

FCC Requirements

Determining "Proper Adjustment" - Correlation of the Method of Moments parameters and antenna monitor indications Ratio +/- 5% Phase +/- 3 degrees Correlation of Method of Moments and measured matrix impedances Within +/- 2 ohms, +/- 4% for both resistance and reactance

Sampling System

"Classic" Proof

Pattern adjusted by field measurements

– Antenna parameters are a "snapshot"

Values are a <u>relative</u> indication of operation

Method of Moments Proof
 – Pattern adjusted by antenna parameters
 Values are an <u>absolute</u> indication of operation

Sampling System

- The Sampling System Must be Accurate
 - Verified equal phase shift in all lines
 - Verified equal impedance for all lines
 - Verified equal sample toroid characteristics
 - Verified accurate antenna monitor

System Measurements

Network analyzer or impedance bridge

Sample Line Verification

Line Open Circuit Tuneable RF source Oscilloscope GR 916AL Bridge

Sample Lines

Verifying Length and Impedance

 Find nearest sample line resonant frequency
 Open circuit line
 Shorts occur at odd multiples of ¼ wavelength
 Ratio frequencies for sample line length at carrier
 Measure lines at + and – 1/8 wavelength

$$Z_{0} = \sqrt{\left(\sqrt{\frac{R_{+\pi}^{2} * X_{+\pi}^{2}}{4}}\right) * \left(\sqrt{\frac{R_{-\pi}^{2} * X_{-\pi}^{2}}{4}}\right)}$$

Sample line measurements with GR-916AL bridge										
Null measurements made with far line end OPEN										
	Null #1	Null #1 Null #2 Null #3 1180 KHz Offset Offset								
Tower	Tower 90 deg 270 deg 450 deg Length +45 deg -45									
	Khz.	Khz.	Khz.	deg.	Khz.	Khz.				
1	318.0	961.0	1609.3	331.5	1121.2	800.8				
2	318.0	961.2	1609.6	331.5	1121.4	801.0				
3	318.0	961.2	1609.5	331.5	1121.4	801.0				
4	318.0	961.1	1609.6	331.5	1121.3	800.9				
5	318.0	961.1	1609.5	331.5	1121.3	800.9				
6	318.1	961.3	1609.9	331.4	1121.5	801.1				
7	318.0	961.1	1609.6	331.5	1121.3	800.9				

Null measurements made with far line end OPEN;

	Meas.	Meas.	Meas.	Meas.	Calc.	Line and Toroid			
Tower	R (+45)	X (+45)	R (-45)	X (-45)	line Z	Meas. R	Meas. X		
	ohms	ohms	ohms	ohms	ohms	ohms	ohms		
1	5.6	48.1	4.4	-50.6	49.6	49.2	1.3		
2	5.6	48.1	4.3	-50.6	49.6	48.6	1.7		
3	5.7	48.1	4.3	-50.6	49.6	48.9	1.3		
4	5.6	48.1	4.3	-50.6	49.6	48.7	1.3		
5	5.7	48.1	4.3	-50.6	49.6	48.8	1.7		
6	5.6	48.1	4.3	-50.6	49.6	48.6	1.3		
7	5.7	48.1	4.4	-50.6	49.6	48.8	1.3		

Sample System

Verifying Toroids - Build a test fixture - Common RF current Toroids closely spaced - Use antenna monitor for measurement Verifying Sample Loops More complicated - FCC Rules 73.151, FCC 08-228

Toroid Verification

Toroid Test Fixture

 Always ground toroids!
 Always terminate!

Operate into Load

Used Potomac 1900

 Equal Length cables
 1.5 RF Volts minimum

FCC Requirements

 Sample line lengths must agree within 1 electrical degree

 Sample line characteristic impedances must agree within 2 ohms

 Toroids allowed for tower heights less than 120 degrees or greater than 190 degrees

Field Measurements

Some Field Measurements Still Required – On pattern minima and maxima

- Three points per radial
- Only reference measurements

Not Monitor Points, No Regular Readings

 However, these measurements (and some others) must be periodically repeated

Maintenance

At Least Once Every 24 Months Sampling system Recertify toroid performance - Common reference signal calibration Recertify sample line performance - Length and characteristic impedance Repeat reference field measurements - Retain in Public Inspection File

The Decision

Method of Moments

"Classic" Proof