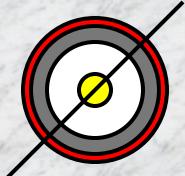


-

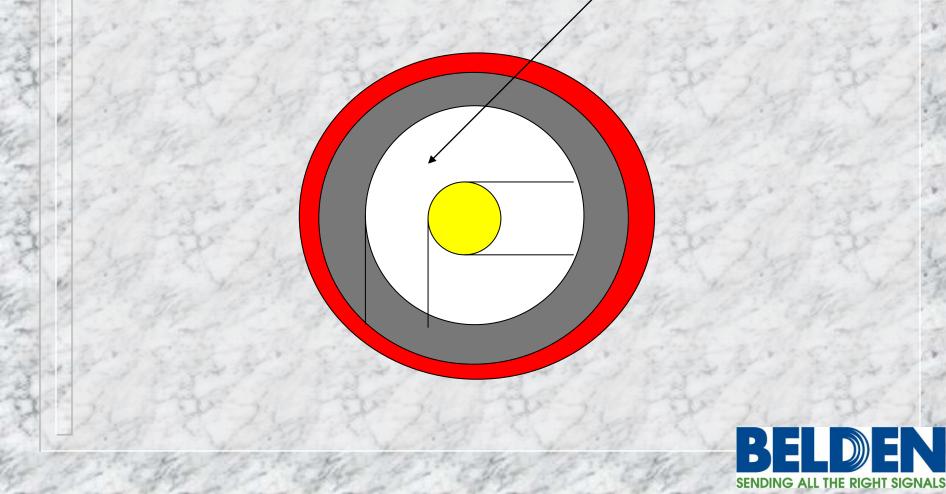
The Inventors of Coaxial Cable May 23, 1929



Lloyd Espenschied and Herman Affel

What is Coax?

Coax is a cable construction where all components lie on the same axis



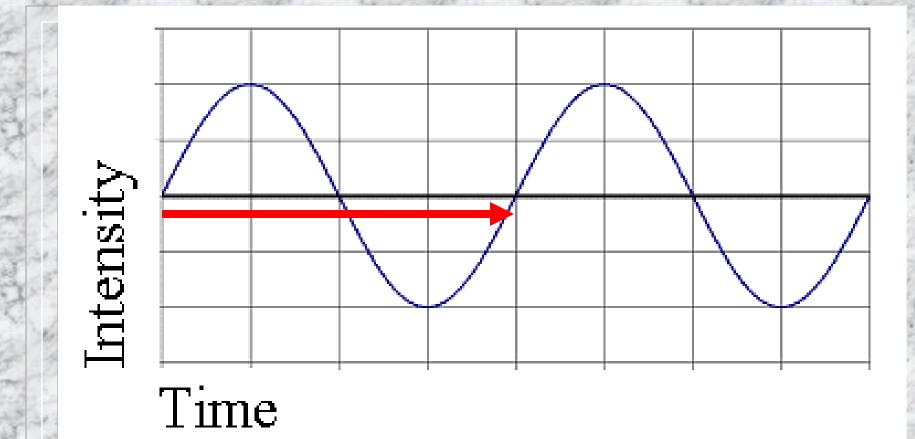
Coaxial Cable

What is Impedance?

What is Impedance?

Impedance changes with frequency
until resistance is a minor effect
until dielectric constant is stable
Where it levels out is the "characteristic impedance."

Characteristic Impedance


BELDERN SENDING ALL THE RIGHT SIGNALS

When is Impedance Important?

When a signal on a cable is at least one quarter of wavelength, then the impedance of the cable is important.

So what is a wavelength?

Here is the formula for a wavelength:

W

300,000,000

F

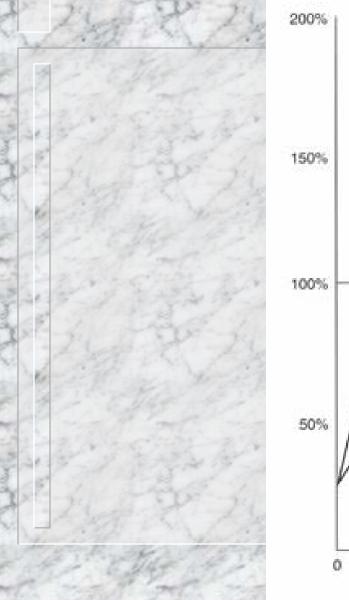
Here is wavelength at different frequencies:

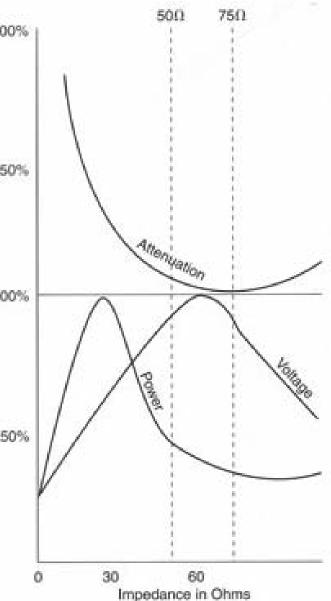
 $\frac{300}{2}$ = 75m = 246 ft. 300,000,000 = 300m = $W_m =$ 1 MHz 4 30 300,000,000 = 30m = $W_m =$ = 7.5 m = 24.6 ft.10 MHz 4 5.56 = 1.39m = 4.6 ft. 300,000,000 $W_m =$ = 5.56m = 54 MHz

$$W_{m} = \frac{300,000,000}{100 \text{ MHz}} = 3m = \frac{3}{4} = 75 \text{ cm} = 2.46 \text{ ft.}$$

$$W_{m} = \frac{300,000,000}{1 \text{ GHz}} = 0.3m = \frac{0.3}{4} = 7.5 \text{ cm} = 3 \text{ in.}$$

$$W_{m} = \frac{300,000,000}{10 \text{ GHz}} = 0.03m = \frac{0.03}{4} = 7.5 \text{ mm} = 0.3 \text{ in.}$$


Wavelength is also affected by the velocity of the dielectric.



Velocity of Propagation = Vp Polyethylene = 66%Teflon = 70%Foam = 78%, 84%, 86%

Why 50 Ω ? Why 75 Ω ?

Center Conductor

Can be... Bare copper Tinned copper Silver-coated copper Copper-clad steel Silver-coated copper-clad steel ... other combinations

The Reason is "Skin Effect"

As signals go higher in frequency, they tend to move to the outside of a conductor.

DC 1 MHz 100 MHz 1 GHz

A Formula for Skin Effect

Rough approximation (in inches).Copper conductors.

 $D_{in} = \frac{2.61}{\sqrt{F_{Hz}}}$

Skin Effect

Frequency	Depth (mm)	Depth (in.)
DC	Entire conductor	Entire conductor
1 kHz	2.07mm	82.6 mils
10 kHz	0.663mm	26.1 mils
100 kHz	0.21mm	8.25 mils
1 MHz	65 microns	2.61 mils
10 MHz	41 microns	.825 mils
54 MHz	9 microns	.355 mils
100 MHz	6.63 microns	261 mils
1 GHz	2.06 microns	.0825 mils

Size of a Conductor

Туре	Conductor	Gage	Size (mm)	Size (in.)
RG-59	solid	24 AWG	0.51mm	.0201 in.
RG-59	solid	20 AWG	0.81mm	.0320 in
RG-6	solid	18 AWG	1.02mm	0403 in.
RG-11	solid	14 AWG	1.6mm	.0641 in.

Skin Effect

Skin effect appears all around the wire.Double the skin effect compares to diameter.

Skin Effect on 24 AWG Solid

RG-59 = 0.51mm = .0201 inches

Frequency	Depth (mm)	Depth (in)	% of Conductor Used
1 MHz	65 microns	00522 inches	26%
10 MHz	41 microns	00165 inches	8.2%
54 MHz	9 microns	00071 inches	3.5%
100 MHz	6.63 microns	.000165 inches	2.6 %
1 GHz	2.06 microns	000522 inches	0.82%

Skin Effect on 20 AWG Solid

RG-59 =0.81mm =.0320 inches

Frequency	Depth (mm)	Depth (in)	% of Conductor Used
1 MHz	65 microns	00522 inches	16%
10 MHz	41 microns	00165 inches	5.2%
54 MHz	9 microns	00071 inches	2.8%
100 MHz	6.63 microns	.000165 inches	2.2 %
1 GHz	2.06 microns	000522 inches	0.52%

Skin Effect on 18 AWG Solid

RG-6 = 1.02mm = .0320 inches

Frequency	Depth (mm)	Depth (in)	% of Conductor Used
1 MHz	65 microns	00522 inches	12%
10 MHz	41 microns	00165 inches	4.1%
54 MHz	9 microns	00071 inches	2.2%
100 MHz	6.63 microns	.000165 inches	1.8%
1 GHz	2.06 microns	000522 inches	0.42%

Skin Effect on 14 AWG Solid

RG-11=1.6mm = .0641 inches

Frequency	Depth (mm)	Depth (in)	% of Conductor Used
1 MHz	65 microns	00522 inches	8.1%
10 MHz	41 microns	00165 inches	2.6%
54 MHz	9 microns	00071 inches	1.1%
100 MHz	6.63 microns	.000165 inches	0.81 %
1 GHz	2.06 microns	000522 inches	0.26%

Skin Effect

Bare copper/silver-coated copper
Good at all frequencies
Tinned copper
Only for low frequencies, easier soldering.
Copper-clad steel/silver-coated copper-clad Only for high frequencies (above 50 MHz)

Copper-clad vs. Copper Clad

Different thicknesses ASTM B452 40% 10% of the conductor 30% 6% of the conductor **ASTM B869** 21% 3% of the conductor

% of signal carried

Frequency (MHz)	Skin Depth (In.)	40% CCS	30% CCS	21% CCS
1	.00290	39.62	23.77	11.88
3	.00168	68.62	41.17	20.59
5	.00129 8	88.58	53.15	26.58
10	.000918	100	75.17	37.58
20	.000649	100	100	53.15
50	.000411	100	100	84.04
60	.000375	100	100	92.06

Solid Copper versus Copper-Clad

% of conductor carrying signal

Frequency (MHz)	Bare Copper	40% CCS	30% CCS	21% CCS
1	100	39.62	23.77	11.88
3	100	68.62	41.17	20.59
5	100	88.58	53.15	26.58
10	100	100	75.17	37.58
20	100	100	100	53.15
50	100	100	100	84.04
60	100	100	100	92.06

Dielectric Constant

- Different plastic have different performance as a non-conductor
- **Dielectric Constant**
 - PVC = 3-8
 - Polyethylene = 2.25
 - Teflon = 2.1
 - Chemically foamed polyethylene = 1.64
 - Gas Injected Foam Polyethylene = 1.54

A Look Back at Wavelength

Wavelength affected by Dielectric Constant. Cable at 100 MHz (1/4 wave = 75cm =2.46 ft.) Solid polyethylene = 66% 2.46 ft. X 66% = 1.62 ft. = 49cm

Shields

In coax, a shield is both a signal carrying and signal protecting layer. Shield can be:

- Serve (spiral) : low frequencies
- Braid: Excellent at low, good at high
- French braid: Excellent at low, very good at high
- Foil: Fair at low, excellent at high
- Combination shields
- Shields below 1,000 Hz.

Transfer Impedance

Shield Type (aluminum braid)	5 MHz	10 MHz	50 MHz	100 MHz	500 MHz
60% braid, bonded foil	20	15	11	20	50
60% braid, tri-shield	3	2	0.8	2	12
60%/40% "quad" shield	2	0.8	0.2	0.3	10
80% braid, tri-shield	1	0.6	0.1	0.2	2
95% <i>copper</i> braid, foil	1	0.5	0.08	0.09	1

Jacket

Protects the insides.
Keeps water, pollution, dirt out
Non-migrating compounds

Maintains dielectric performance

Identification printed on it
Footage printed on it
Colors

What the connector holds onto

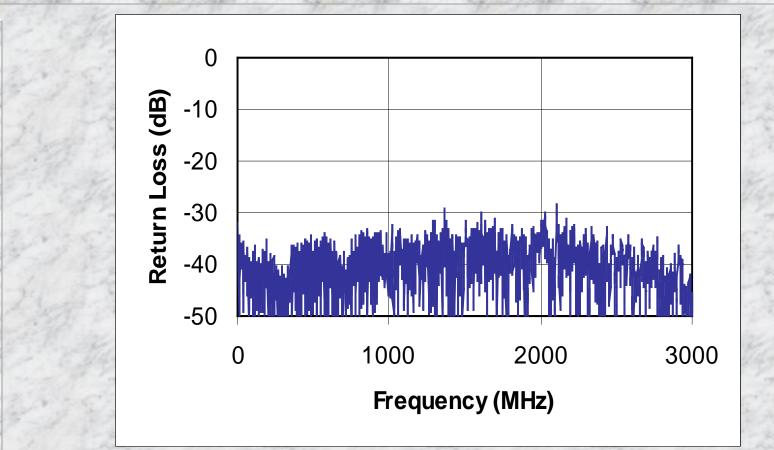
How to Judge Performance

Resistance

- All copper –low resistance
- Copper-clad higher resistance (x5, x7)

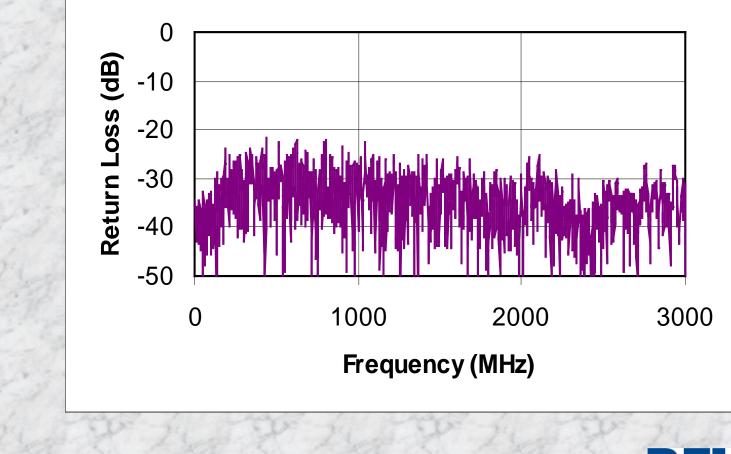
Capacitance

- Based on dielectric
 - Gas-injected foam = 16 pF/ft.= 53pF/m
 - Solid polyethylene = 20 pF/ft.= 76pF/ft.
- Track impedance
- Transfer impedance

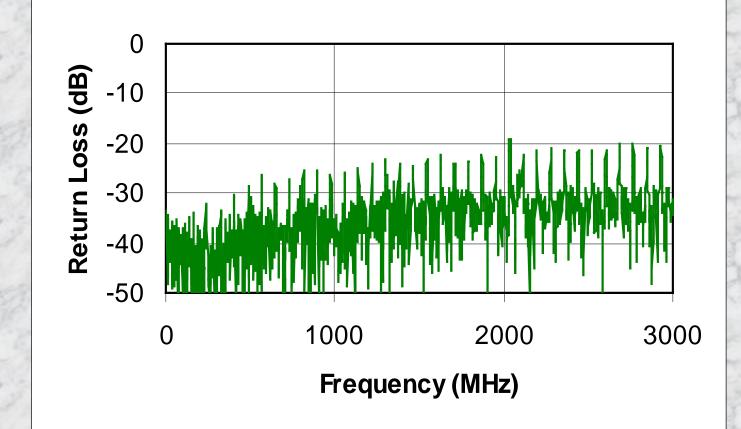

Return Loss

- The best way to determine performance.
 - Shows manufacturing defects
 - Wrong size components
 - Poor centering
 - Machine variations
 - Packaging and storage problems
 - Shows installation defects
 - Bend radius exceeded
 - Pull strength exceeded
 - Same as VSWR

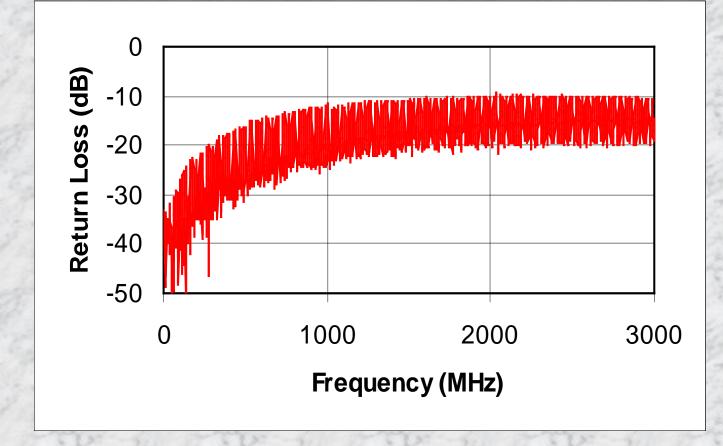
Good Return Loss


New cable, 100 ft. (30.4m)

Bad Return Loss


"Mangled" cable, 100 ft. (30.4m)

Periodic Return Loss


Crimped every 10 ft. (3m) in a 100 ft. piece. (30.4m)

Periodic Return Loss

10 connectors, 4 barrels (barrels wrong?)

Impedance Match

Return Loss	Match
-10 dB	90%
-15 dB	96.84%
-20 dB	99%
-25 dB	99.68%
-30 dB	99.9%

For More Information...

9,000 pages of information 1,000,000+ hits per week Connector cross-reference Samples: 1-800-BELDEN-1

