Getting The Most Out Of Your Wireless Mics

Best Practices: Antennas, RF Coordination & Hardware

Dave Mendez – Senior Market Development Specialist

LEGENDARY PERFORMANCE[™]

The Wisdom of Dilbert...

Antennas: Getting the range you need

Shure UHF Wireless What Is The Range?

- Let's define "Range"
 - Distance between the receiver and where the first drop-out occurs

The range of most PRO UHF systems is approx. 500 ft. under ideal conditions

- Minus:
 - 95% (outdoor) if the selected frequency overlaps with a TV channel
 - 65% (indoor) if the selected frequency overlaps with a TV channel
 - 50% if the frequencies are not compatible (multiple systems)
 - 50% if the antennas are not properly setup
 - 50% if used inside of a building
 - 40% if the receive antennas are very close to other electronic equipment

UHF Wireless Systems What Is The Range?

Squelch Circuits

•AMPLITUDE SQUELCH

- based on RF signal strength

•NOISE SENSITIVE SQUELCH

- based on audio signal quality, looks for high frequency noise characteristic of RF signal

•TONE KEY SQUELCH

- a super-audible tone is sent with carrier, receiver gate will not open if tone is not present

•INCREASE SQUELCH

•May improve system stability and quality of sound

•Decreases range •DECREASE SQUELCH

•May improve range & reduce dropouts

Increases noise in system

Antenna Types

- Omnidirectional
 - $-\frac{1}{2}$ wave or $\frac{1}{4}$ wave dipole type
 - Vertical polarization
 - Uniform sensitivity in plane perpendicular to axis
 - 2.14dBi gain (relative to theoretical isotropic antenna)
- Directional
 - Log periodic or helical type
 - Vertical or circular polarization
 - Increased sensitivity on-axis
 - Decreased sensitivity off-axis
 - Up to 13dBi gain (up to 11dB relative to 1/2 wave)

Omnidirectional Antennas

Wideband Omnidirectional Antenna

Directional Antennas

- Directional
 - Log periodic (wide band)
 - Helical (wide band)
 - Good for increased range or pattern control

Log Periodic Antenna

Radio Frequency Transmission

- Radio Waves:
 - Series of electro-magnetic field variations in space.
 - Travel a significant distance from their source.
- Radio Signals:
 - Radio waves "modulated" to carry information.
 - May be modulated in amplitude, frequency, and/or phase

Multipath Interference

Metal reflecting surface(larger than wavelength)

Diversity Systems 3

Antenna switching diversity

• Proper orientation

- Antenna height should be above audience or other obstructions
- Altitude is your friend!

Antenna Placement: Wireless Mic Transmit > Wireless Mic receive

• Minimum distance from transmit antenna to receive antenna should be at least 10 ft.

Antenna Placement: In-ear Transmit > Wireless Mic Receive

- Minimum distance: In-ear transmit > Wireless mic receive
 - At least 10 ft. with low-power, omni antennas
 - Farther with high-power and/or high-gain antennas
 - May be closer with parallel directional antennas

LEGENDARY PERFORMANCE[™]

Propagation: Wavelength vs. Obstacle

SHURE

Propagation: Wavelength vs. Obstacle

Propagation: Wavelength vs. Opening

Propagation: Wavelength vs. Opening Metal Obstacle Wavelength Opening Wavelength much LARGER than opening: WAVE IS REFLECTED

Remote Antenna Best Practices

- Use 1/2 wave omni or wideband directional antennas
- Position for best line-of-sight
- Maintain adequate diversity separation
- Net loss < 5dB
 - Use minimum cable length
 - Use lowest loss cable
 - Use amplifier(s) when necessary
- Net gain < 5dB
 - Use minimum gain
- Separate wireless mic receive antennas from in-ear monitor and intercom transmit antennas!

Coaxial Cable Losses

- 50 Ω coaxial cable should be used (robust, consistent)
- Less recommended: RG59, RG6, RG11 (75 Ω)

Type Of Cable	Loss @ 200MHz (100 ft)	Loss @ 650MHz (100 ft)
RG58C/U SHURE PA725	9dB	19 dB
RG8X/U SHURE UA850	4.5dB	10.3 dB
RG213/U SHURE UA8100	2.7 dB	6.03 dB
RG8/U Belden 9913	1.8 dB	3.1 dB

Typical Cable Loss for 50 Ohm Cable

Antenna Amplifiers

Antenna System Configuration

• Antenna System Gain:

(Ant Gain) + (total booster/amp gain) – (cable loss) – (split loss)

- Total gain for 500 ft range = -3 to +6 dB (fewer compatible systems)
- Total gain for 20 to 200 ft range = -12 to -3dB (more compatible systems)
- Total acceptable gain varies with system and manufacturer

Antenna Gain Settings

Antenna System Configuration

- NO requirement for symmetry in antenna configuration:
 - Antennas do NOT have to be the same type:
 - Omni with uni OK!
 - Different types of omni OK!
 - Different types of uni OK!
 - Antenna cables do NOT have to be the same length:
 - Short cables with long cables OK!
 - Cable with direct connection on receiver or distribution amp OK!

Antenna System Configuration

- More than 3 systems? Antenna distribution
- Hidden receivers? Remote antennas
- Long range operation? Directional antennas

 Minimum distance from transmit or receive antenna to any parallel metal structure should be at least ¹/₄wavelength (4-5 in. in the UHF range).

Antenna Distribution

- Prevents closely-spaced receiver antennas from interfering with each other
 - Passive splitter
 - feeds one pair of antennas to 2 diversity receivers
 - ~3dB loss per split
 - Active splitter
 - feeds one pair of antennas to 4-5 diversity receivers
 - no loss!
 - Multiple active splitters can be linked to feed a large number of receivers
 - RF Cascade
 - Only available on some receivers
 - Eliminates need for external splitter
 - No loss, but limited cascade depth

Passive Antenna Distribution

Active Antenna Distribution (one level)

Active Antenna Distribution (two level)

Active Distribution (>2 distros)

RF Cascade Distribution

RF Cascade Distribution – UR4+

- Maximum 10 units
 20 dual channel RX
- All RX must be in same band!
- All RX must be powered on!

Large area antenna coverage

Frequency Coordination

Main UHF Interference Sources

- OTA Television Signals
 - Digital TV
 - Occupy all 6MHz allocation
 - Watch for Lower Power stations!
 - Public Safety Channels
 - 13 Major Markets in US
 - Analog TV still around!
- Other wireless mic users
 - ENG/Studio Broadcast
 - Theatres
 - HOW
 - Concert Venues
 - The list goes on....

Other Interference Sources

- Unknown radio transmitters
 - Wireless in-ear monitor systems
 - Wireless intercom systems
 - Portable Studio Transmitter Links (STL)
 - Out-of-band transmitters (CB, Business, Public Safety)
 - GSM devices: mobile phones, pda's
- Nearby digital equipment
 - Audio DSP (CD players, DAT, FX)
 - Computers, computer-controlled devices (Lighting, etc)
- Hi-capacity power equipment
 - Motors, HVAC, Lighting

Scanning and RF Meters

- Especially important for remote work
 - Scanning can capture TV or public safety unknown to software/hardware
 - Receiver RF Meters can help

System-to-System Interference

- Primary Compatibility issues:
 - Minimum frequency separation (selectivity)
 - Transmitter IMD products (intermodulation)

Frequency Compatibility: Minimum frequency separation

- Each system must operate on a unique frequency
- Frequencies must be at least 0.4 1.5 MHz apart
- Minimum spacing a function of receiver selectivity
- BE CAREFUL WITH COMBO SYSTEMS!

Linear vs. Non-linear Circuits

Frequency Compatibility: Intermodulation (IMD)

- Inherent non-linearities of wireless circuitry
- Occurs with 2 or more transmitters
- Generated in transmitters and/or receivers
- IMD product strength
 - Proportional to square of transmitter power
 - Inversely proportional to square of transmitter separation

PERFORMANCE"

2 & 3 Transmitter IMD

Multiple Transmitters On

Scan with Transmitters Off

- Peaks are Transmitters
- Lower carriers are IMD Products
- This a fully COMPATIBLE frequency set!

Scan with UHF-R Receiver and 8 Transmitters ON

Insuring System-to-System Compatibility

- Choose pre-selected compatible frequency set:
 - A "Group" is a programmed set of freqs
 - A "Channel" is one frequency in a group
 - All "Channels" in a "Group" are compatible

-or-

- Calculate a "custom" compatible frequency set:
 - Observe minimum ch-to-ch spacing
 - Observe minimum ch-to-IMD spacing
 - Must be done with a software(i.e. WWB)

Worst possible set is equally spaced frequencies!

Compatibility Tools

- Shure Wireless Work Bench 5.0.5
 - UHF-R receivers
 - Compatible with certain WinRadio models
 - WR-G305e or WR-G33WSM
- Shure Wireless Workbench 6.4
 - UHF-R
 - ULX-D
 - PSM1000
 - Axient Receivers or Spectrum Manager
- PWS Intermod Analysis Software

QUESTIONS?

Presenter

- Dave Mendez: <u>mendez_dave@shure.com</u>
- Shure Technical Support
 - Ph: 847-600-8440
 - email: support@shure.com
 - Knowledge base: www.shure.com/fag
- Shure Service Department (Repair and Parts)
 - Ph: 800-516-2525
 - email: service@shure.com

