

Transmitter choices for the next digital roll out...

What technology is the best fit for your station?

Key factors for the Engineering Manager:

- Signal Quality SNR/MER
- **Cost of Operation Efficiency**
- ➢ Reliability
- Maintenance
- >Obsolescence

- > Quick look at SS device progression
- Signal Quality The Key Ingredients
- Cost of Operation Transmitter Efficiency Comparisons versus Power Output
- Reliability & Maintenance System Complexity
- > Obsolescence Device stability

Quick look at SS device progression

- > Signal Quality The Key Ingredients
- Cost of operation Transmitter Efficiency Comparisons versus Power Output
- > Reliability & Maintenance System Complexity
- > Obsolescence Device stability
- > Space considerations

How "in" efficient is your "green" transmitter?

A Brief History..... Of transmitter devises & efficiencies

> Quick look at SS device progression

Signal Quality – The Key Ingredients

- Cost of operation Transmitter Efficiency Comparisons versus Power Output
- > Reliability & Maintenance System Complexity
- > Obsolescence Device stability
- > Space considerations

There are several SNR degradations in the link between the transmitter and the receiver starting... with the transmitter

- > At the TX Site
 - □ Intermodulation and cross-modulation products with the transmitter
 - □ Noise due to the issues between transmitter and antenna.
- > Propagation
 - □ Various propagational Interference, natural & man made
- > At the home
 - **Co-** channel & Adjacent channel interference
 - □ Receiver equalizer adds white noise

ALL POTENTIALLY DEGRADE THE RECEIVED SNR and DECREASE COVERAGE

As Transmitter Signal to Noise Ratio (T-SNR) decreases the ability to pick up a received signal drops proportionally.

➤ "Good" >66% >26dB

➤ "Bad" > 33% >17dB

> "Ugly" 33% <17dB</p>

TV Signal Quality (Reception) -vs-Transmitter SNR Non-linear distortion 120 100 The Good 80 60 The Bad 40 20 & the Ugly 10 12 14 16 20 30 32 34 36 38 18 22 24 26 28

Look for these technologies in your Exciter

To obtain a balance between maximum efficiency and maximum signal quality:

- Drive the amplifier into saturation to obtain the best efficiency and ...
- Correct the signal using the latest correction techniques
 - Digital Pre-Distortion with "PA modeling"
 - Crest Factor Reduction (CFR)
 - Memory Error Correction (MEC)

New Digital Pre-distortion algorithms significantly improve IMD and SNR

- Mathematical PA modeling
- Crest Factor Reduction
- Memory Error Correction
- Significantly improves IMD and SNR

These techniques can almost DOUBLE the efficiency of a modern transmitter

Couple this with new Amplifier design techniques and you very efficient transmitter options

Quick look at SS device progression Signal Quality – The Key Ingredients

- Cost of operation Transmitter Efficiency Comparisons versus Power Output
- > Reliability & Maintenance System Complexity
- > Obsolescence Device stability
- > Space considerations

- Best choice of technology varies with application
 One size does NOT fit all
- SS options include:
 - □ 50V device designs great for low power applications
 - □ Doherty Modulation best suited for HP up to 30 kW
 - Paralleling two amplifiers devices; first operating in Class AB which amplifies the average power level, and the second operates in Class C amplifying just the peaks of the waveform. Output of two devices are combined with a matched transformer.
 - □ Drain Modulation (or Envelope Tracking) complex
 - Operates by modulating the DRAIN of a FET amplifier with the input signal so that the Power Supply voltage follows the level of the input signal. The amplifier operates near the high-efficiency saturation point over a significant portion of the envelope depth.
- IOT most efficient for most stations above 30kW

DOHERTY Amplifier design was invented by William Doherty in 1934 by Bell Labs.

Carrier amplifier:Class AB (saturates at high power input)Peak Amplifier:Class C (Turns on at high power input)

DOHERTY Configuration improves linearity at the high power input by complementing the saturation of the carrier amplifier with the turn on characteristics of the peak amplifier

NXP semiconductors and Freescale both have released transistors "optimized" for Doherty amplifier applications.

Efficiency Comparisons

Efficiency Comparisons

Efficiency Comparisons

Constant Efficiency IOT vs. Daugherty Solid State

Cost of Operation – Efficiency Comparison at 10kW

Amplifier Type		32V	50V	Doherty / Drain	MSDC-IOT
Transmitter Power Output -	kW	10	10	10	10
Amplifier Efficiency		18%	27%	42%	50%
Transmitter Efficiency		15%	21%	35%	26%
Transmitter Consumption		66.7	47.6	28.6	38.5
Cost of Energy at \$/kW/Hr	\$ 0.10	\$ 58,400	\$ 41,714	\$ 25,029	\$ 33,692

Compared to Doherty				\$	(8,664)
Compared to 50V Basic			\$ 16,686	\$	8,022
Compared to 32V		\$ 16,686	\$ 33,371	\$	24,708
CAPEX	N/A	\$ 280,000	\$ 300,000	N/A	A
Over 5 Years		\$ 83,429	\$ 166,857	\$	123,538

Cost of Operation – Efficiency Comparison at 20kW

32V	50V	Doherty / Drain	MSDC-IOT
20	20	20	20
18%	27%	42%	57%
15%	21%	35%	37%
133.3	95.2	57.1	54.1
10 \$ 116,800	\$ 83,429	\$ 50,057	\$ 47,351
•	20 18% 15% 133.3	20 20 18% 27% 15% 21% 133.3 95.2	20 20 20 18% 27% 42% 15% 21% 35% 133.3 95.2 57.1

Compared to Doherty				\$ 2,706
Compared to 50V Basic			\$ 33,371	\$ 36,077
Compared to 32V		\$ 33,371	\$ 66,743	\$ 69,449
CAPEX	N/A	\$ 400,000	\$ 470,000	\$ 525,000
Over 5 Years		\$ 166,857	\$ 333,714	\$ 347,243

Cost of Operation – Efficiency Comparison at 30kW

Amplifier Type	32V	50V	Doherty / Drain	MSDC-IOT
Transmitter Power Output - kW	30	30	30	30
Amplifier Efficiency	18%	27%	42%	57%
Transmitter Efficiency	15%	21%	35%	43%
Transmitter Consumption	200.0	142.9	85.7	69.8
Cost of Energy at \$/kW/Hr \$ 0.10	\$ 175,200	\$ 125,143	\$ 75,086	\$ 61,116

Compared to Doherty				\$ 13,969
Compared to 50V Basic			\$ 50,057	\$ 64,027
Compared to 32V		\$ 50,057	\$ 100,114	\$ 114,084
CAPEX	N/A	N/A	\$ 670,000	\$ 550,000
Over 5 Years		\$ 250,286	\$ 500,571	\$ 570,419

Cost of Operation – Efficiency Comparison at 40kW

Amplifier Type		32V	50V	Doherty / Drain	MSDC-IOT
Transmitter Power Output - k	W	40	40	40	40
Amplifier Efficiency		18%	27%	42%	57%
Transmitter Efficiency		15%	21%	35%	48%
Transmitter Consumption		266.7	190.5	114.3	83.3
Cost of Energy at \$/kW/Hr \$	0.10	\$ 233,600	\$ 166,857	\$ 100,114	\$ 73,000

Compared to Doherty				\$ 27,114
Compared to 50V Basic			\$ 66,743	\$ 93,857
Compared to 32V		\$ 66,743	\$ 133,486	\$ 160,600
CAPEX	N/A	N/A	\$ 915,000	\$ 850,000
Over 5 Years		\$ 333,714	\$ 667,429	\$ 803,000

Amplifier Type	32V	50V	Doherty / Drain	MSDC-IOT
Transmitter Power Output - kW	60	60	60	60
Amplifier Efficiency	18%	27%	42%	62%
Transmitter Efficiency	15%	21%	35%	54%
Transmitter Consumption	400.0	285.7	171.4	111.1
Cost of Energy at \$/kW/Hr \$ 0.10	\$ 350,400	\$ 250,286	\$ 150,171	\$ 97,333

Compared to Doherty				\$ 52,838
Compared to 50V Basic			\$ 100,114	\$ 152,952
Compared to 32V		\$ 100,114	\$ 200,229	\$ 253,067
CAPEX	N/A	N/A	\$ 1,200,000	\$ 920,000
Over 5 Years		\$ 500,571	\$ 1,001,143	\$ 1,265,333

Quick look at SS device progression Signal Quality – The Key Ingredients Cost of operation – Transmitter Efficiency Comparisons versus Power Output

> Reliability & Maintenance – System Complexity

> Obsolescence – Device stability

> Space considerations

- Reliability ~ All HP DTV transmitters will have failures!!!
 - □ Solid State requires on average 1 replacement PA module per year
 - □ MSDC-IOT expected device life of >87,600 hours (10 years)
 - □ Normal wear items affect both (fans, pumps, etc.)
- > Maintenance ~ All HP DTV transmitters require maintenance!!!
 - □ Air cooling (not typically used >5kW) has to be kept clean and cool
 - □ Liquid cooling systems need the coolant monitored, flushed periodically
 - □ Long term stability of new SS designs not yet known
- > IOT based transmitters have specific needs and skill sets:
 - □ The HV compartment needs to be kept clean / safety considerations
 - Safety interlocks should be checked
 - □ Filament management for the highest device life expectancy

<u>Comparison</u>	Fixed DRAIN	DOHERTY	MSDC-IOT
Efficiency Amplifier Efficiency Transmitter	28 - 30% 20 - 22%	44 - 46% 28 - 29%	57 - 62% 37 - 54%
Broadband	YES	NO	YES
Reliability	GOOD	VERY GOOD *	GOOD **
Complexity	GOOD	Unknown*	AVERAGE
Active Redundancy	GOOD	MEDIUM	GOOD **
Performance at Reduced Power	MEDIUM	POOR	EXCELLENT

* Adequate field data is still being complied by vendors

** Assumes a dual HPA IOT design used

Quick look at SS device progression Signal Quality – The Key Ingredients

Cost of operation – Transmitter Efficiency Comparisons versus Power Output

> Reliability & Maintenance – System Complexity

> Obsolescence – Device stability

> Space considerations

Evolution Leading to Device Obsolescence

- Solid State devices continue to evolve and improve:
 - □ Bipolar to LDMOS
 - □ Higher supply voltages (28, 32, 38, 50 VDC....)
 - □ Higher power capability per transistor
 - □ Higher efficiencies (<10% \rightarrow >35%)
- > As devices evolve, older series quickly become obsolete....
- Where are you on the technology curve?

Tube based amplifiers had 3 major evolutions

- ≻ Klystron \rightarrow IOT \rightarrow MSDC-IOT
 - □ Klystrons not used in DTV
 - □ IOT and MSDC-IOT both widely used and available
- Tube Vendors continue to support traditional IOT
- Tube Vendors continue to service and sell Klystrons for the Scientific / Medical / Industrial markets

THANK YOU

More information?

Michael Roosa mroosa@comarktv.com 413 998 1528

COMARK Communications

104 Feeding Hills Road Southwick MA, 01077, USA CUSTOMER SERVICE TOLL FREE # 1 800 345 9295

