

Mobile DTV TRANSMISSION SYSTEM Overview

Gary Sgrignoli DTV Transmission Consultant

Phone: 847-259-3352 Cell: 847-650-9878 E-Mail: gary.sgrignoli @ IEEE.org

Sgrignoli

WBA Broadcasters Clinic: October 10, 2013

Agenda

- Mobile / Handheld DTV Overview
- M/H System History
- M/H DTV Introduction
- ATSC Terrestrial Transmission System Overview
- ATSC M/H Transmission System Details
- M/H Field Testing Summary
- Broadcaster Recommendations
- Closing Thoughts

Sgrignoli

MOBILE / HANDHELD DTV OVERVIEW

ATSC M/H System Background

- After fixed terrestrial broadcasting became established, broadcasters wanted to expand services
- More system flexibility (2000)
 - Repeater capability
 - Mobile & handheld (M/H) capability

(translators, on-channel repeaters, & SFN)

(improved robustness to increased propagation severity)

Same RF spectrum usage, transmit powers, & interference protection

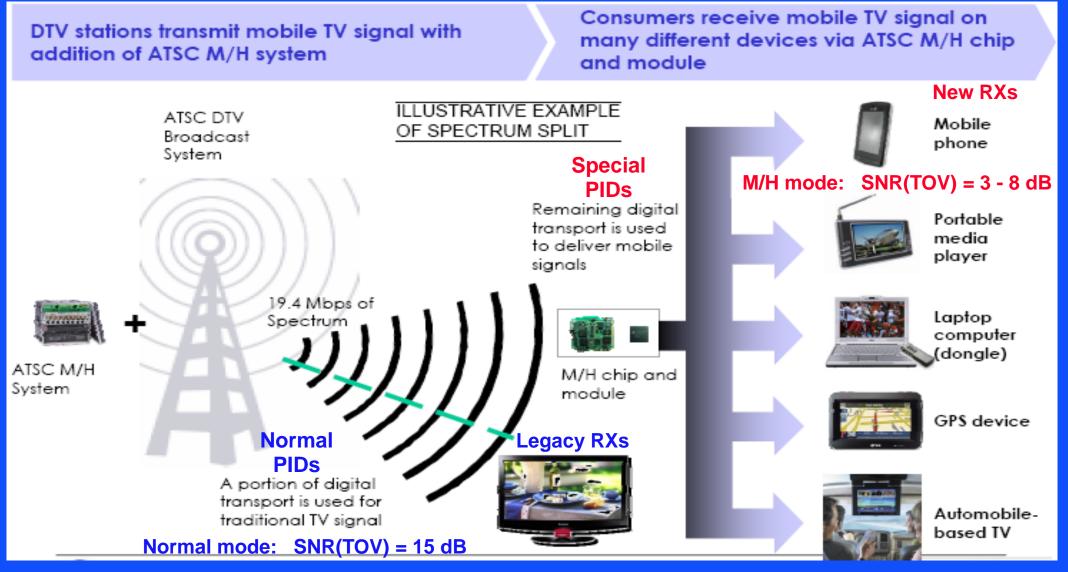
- But with backwards compatibility to protect:
 - Legacy consumer receiver investments
 - Legacy broadcaster equipment investments
 - Spectral allocations

ATSC M/H System Benefits

Broadcast streaming is alternative to Internet & mobile telephony.

- "One-to-many" architecture with no network congestion
- No outside providers or data plan consumption charges
- High quality live, *local* television
- Free & reliable propagation path
 - Especially in time of emergency or catastrophe
 - M-EAS standard now available

(hurricanes, tornadoes, earthquakes, ...) (Mobile Emergency Alert System)


TV "on the go" everywhere

- Triple play: HDTV, SD, & Mobile
- Potential for free mobile television as well as pay services, as desired
- Consumer viewing habits available via service & audience measurement

• No need for: WiFi, Internet, cellular phone service, or data plans Sgrignoli
MSW

5

ATSC M/H System Applications

Sgrignoli Backwards compatibility: Legacy DTV sets read M/H PIDs & gracefully discard M/H packets MSW

6

M/H SYSTEM HISTORY

ATSC M/H System Brief History

- ATSC M/H standardization process begins: October 2006
 - ATSC Request for Proposals: May 2007

3

- Open Mobile Video Coalition (OMVC) created: 2007
- OMVC feasibility (IDOV) field experiments & market study: 2008 years
 - ATSC Candidate Standard: November 25, 2008
 - FCC full-power analog station turn-off (10-year Transition): June 12, 2009 <---

months

- Finalize ATSC M/H Standard (A/153, Parts 1-8): October 15, 2009
 - FCC announces conversion of TV spectrum to broadband: Oct 2009 <--
 - FCC announces National Broadband Plan (NBP): March 2010
 - Mobile Content Venture & Mobile 500 Alliance both created: 2010
 - ATSC Mobile EAS (M-EAS) standard (A/153, Part 10): Spring 2012
 - 133 * broadcast stations transmitting M/H in 49 markets: September 2013

* 24 more stations announced M/H service "coming soon" for a total of 157 in 51 markets MSW 8 Sgrignoli

ATSC M/H System OMVC Mission

- Open Mobile Video Coalition (OMVC)
 - Created in 2007 by broadcast groups & stations
 - Desired a *single* industry standard

Goals

- Field Test Proposed Physical Layer Systems: IDOV (Independent Demonstration of Viability)
- Work with ATSC: M/H Standards
- Consumer trials & service evaluations: Focus Groups
- Funded & performed system testing: Various Layers
 - RF Layer Performance & System Configuration Testing
 - Development of RF Propagation Modeling
- Advocate M/H to: Carriers, Consumers, & Device Manufacturers

NAB taking leadership role in continuing implementation

• OMVC integrated into NAB December, 2012 Sgrignoli

ATSC M/H System Handheld & Mobile Groups

Mobile Content Venture (Dyle TV)

- Created in April 2010
- Represent 12 major broadcast groups
- Covers ≈55% of population
- Dyle Service with encryption keys, even for free service (allows feedback on viewer choices)

Mobile 500 Alliance (MyDTV)

- Created in December 2010
- 46 broadcasting members, represent 420 stations
- Represent >24 broadcast companies
- Covers > 90% of TV households

Mobile

• Perhaps merge or join forces in late 2013

(4 public)

(own >346 commercial TV stations)

(May 2013 @ ATSC meeting)

Sgrignoli

M/H DTV INTRODUCTION

ATSC M/H System General M/H Features

Dual stream system

- In-band M/H service uses *portion* of 19.392 Mbps 8-VSB data payload
- Improved methods for mobile/handheld data reception
 - Forward Error Correction (increased sensitivity & immunity to burst noise; data thresholds @ 3-8 dB)
 - Stronger Reed-Solomon
 - Additional & longer interleaving for better time diversity
 (1 sec RS Frame, Block Interleaving)
 - Serial Concatenated Convolutional Coding (SCCC) & Turbo decoding
 - 8-level training signals (faster synchronization & multipath mitigation; > 100 mph)
 - Additional reference signals with higher repetition rate

Data efficient

- Scalable coding for reception robustness versus payload data rate tradeoff
- Each RF channel capable of 8 mobile streams @ 630 kbps for each stream

Burst data transmission

- Rx power cycling
- Battery life extension

Sgrignoli

(1/2-rate & 1/4-rate)

ATSC M/H System General M/H Features (cont)

- Efficient video (MPEG-4) & audio (HE AAC) coding schemes
 - High <u>quality</u> or large <u>quantity</u> *live* or *non-real-time* programs

IP-based mobile payload

- Supports stream & non-real-time file delivery
- Enables cross-media compatibility
- System optionally supports service features.
 - Viewer identification
 - Access control
 - Paid service offerings

Easy integration into ATSC broadcast systems.

- No constraints on PSIP
- No changes or additions to STL

(advertising information)

(single SMPTE 310M STL capability)

Sgrignoli

ATSC M/H System

Backwards Compatibility with Standard 8-VSB

- Same Tx hardware infrastructure
- Identical signal format:
 - MPEG data transport stream headers
 - Equi-probable 8-VSB data levels
 - Same data frame structure & synchronization
 - Legacy PSIP carriage utilized
- Legacy receiver error correction capability
- Audio decoder buffer constraints
- Indistinguishable emitted RF spectral characteristics
- FCC Considerations:
 - Same broadcast RF channel assignment
 - No additional FCC authorization required

(encoder / mux & exciter < \$150k startup cost)

(encapsulate IP datagrams)

(segments, sync, pilot, FEC)

(same ERP & interference)

(still need to transmit 1 free SD program)

ATSC M/H System Backwards Compatibility with Standard 8-VSB (cont)

Standard (*legacy*) ATSC 8-VSB receivers

- Special M/H PIDs are read & packets gracefully discarded
- Identical error correction capability
- Same TOV performance

(SNR ≈ 15 dB @ threshold)

Special (new) receivers with additional capability

- Special M/H packets are known & robustly decoded
- Allows indoor, portable, pedestrian, & mobile reception
- Provides larger coverage area

(SNR \approx 3 - 8 dB @ threshold, depending on coding)

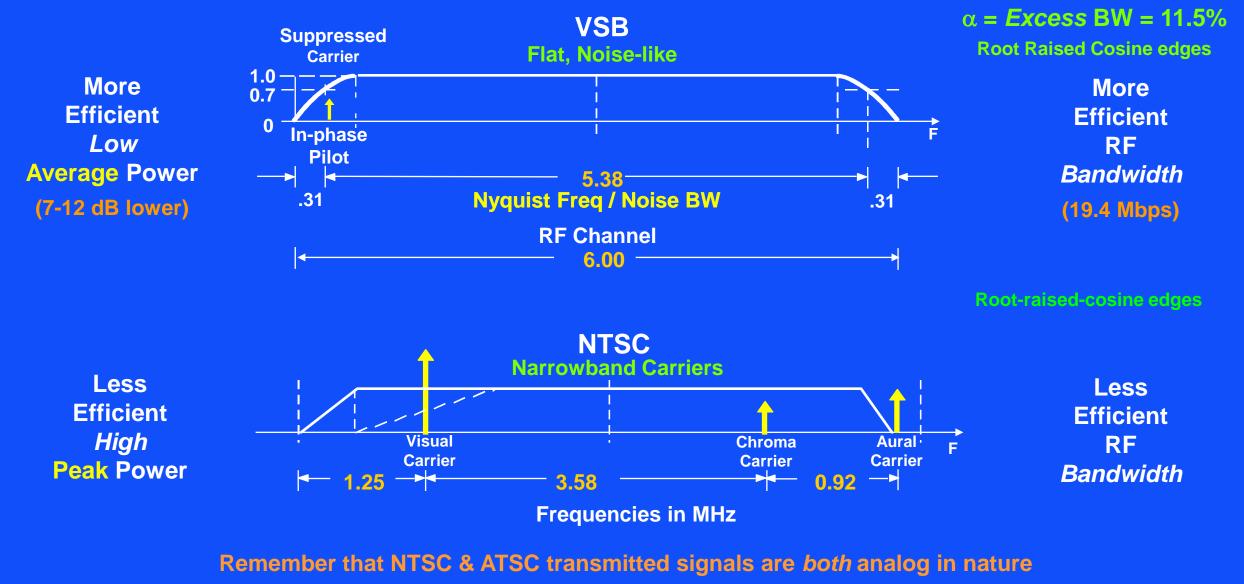
Sgrignoli

MSW 15

(TPC signaling)

ATSC DIGITAL TERRESTRIAL TRANSMISSION SYSTEM OVERVIEW

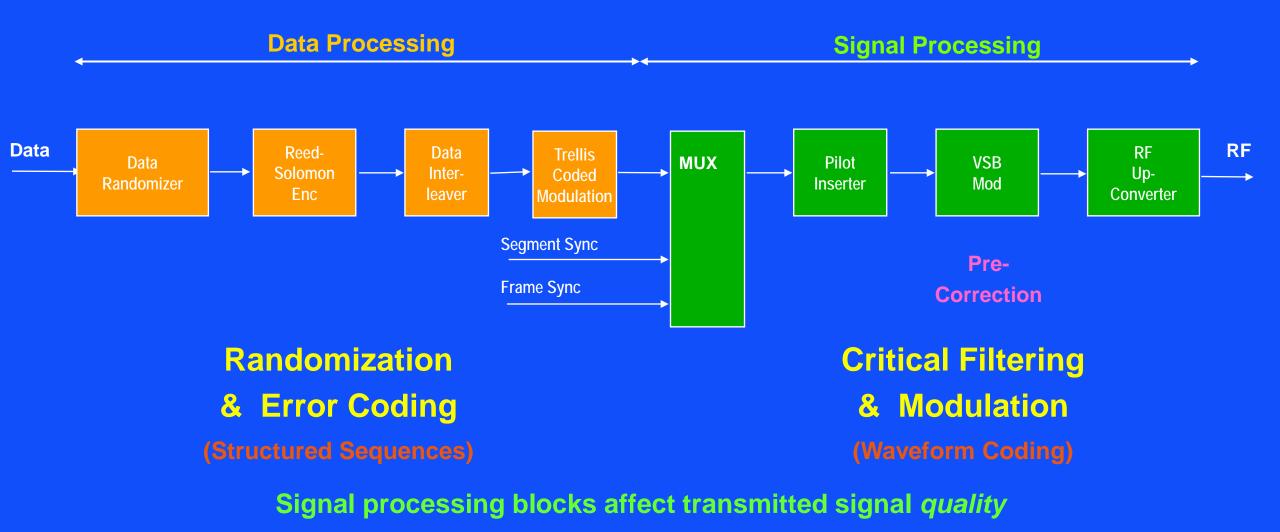
(with paranthetical comments ...)


See A/53 at www.atsc.org

16

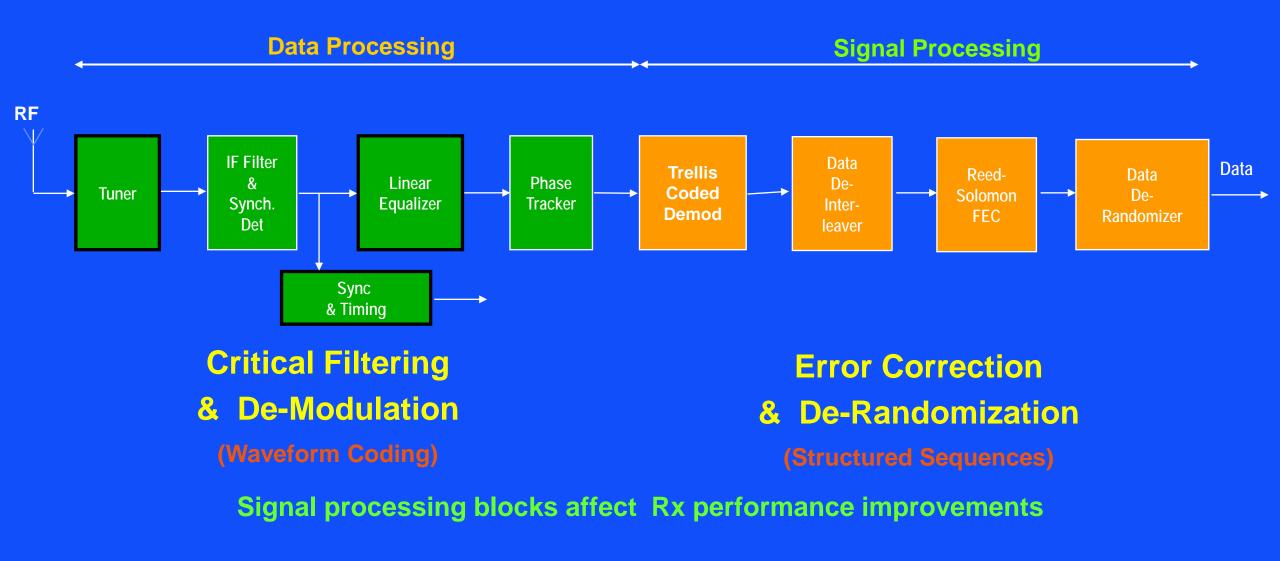
MSW

Sgrignoli


ATSC Legacy Transmission System Overview VSB & NTSC Spectra Comparison

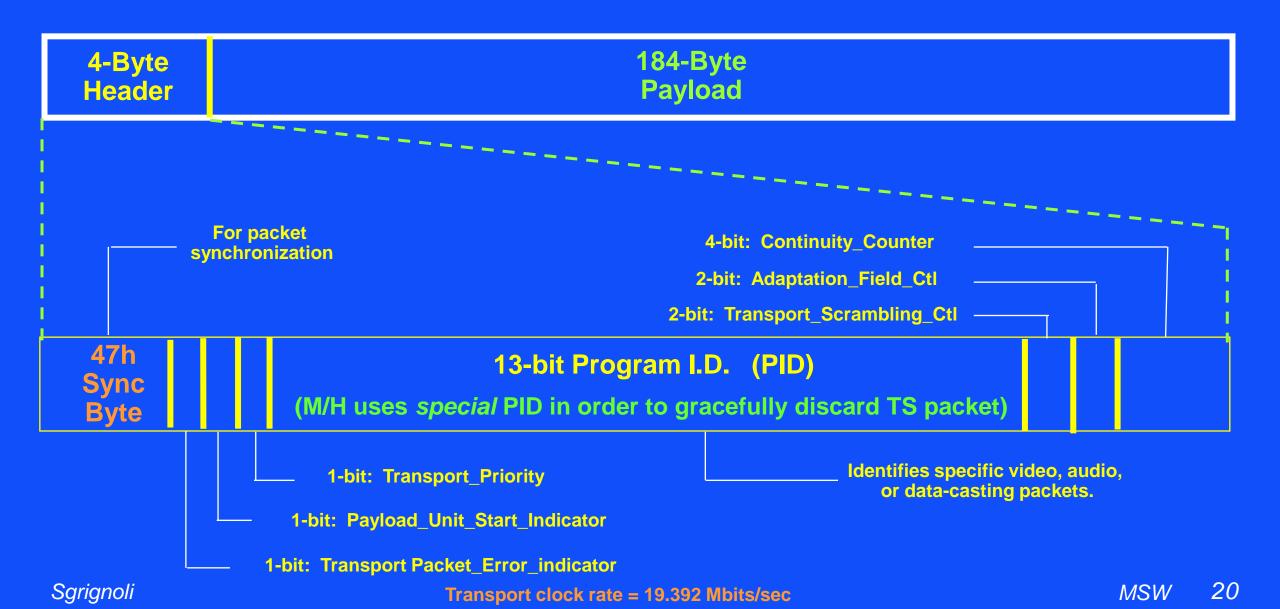
Sgrignoli Adding M/H capability to legacy ATSC signal has identical RF spectral characteristics MSW

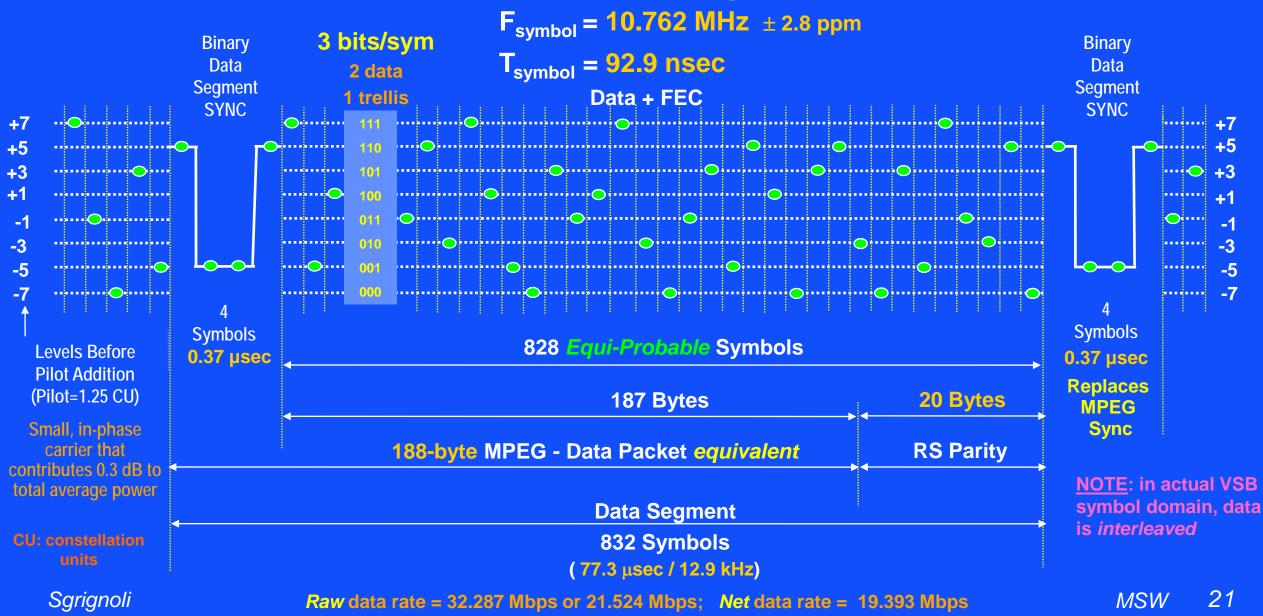
17


ATSC Legacy Transmission System Overview 8-VSB Transmitter Block Diagram

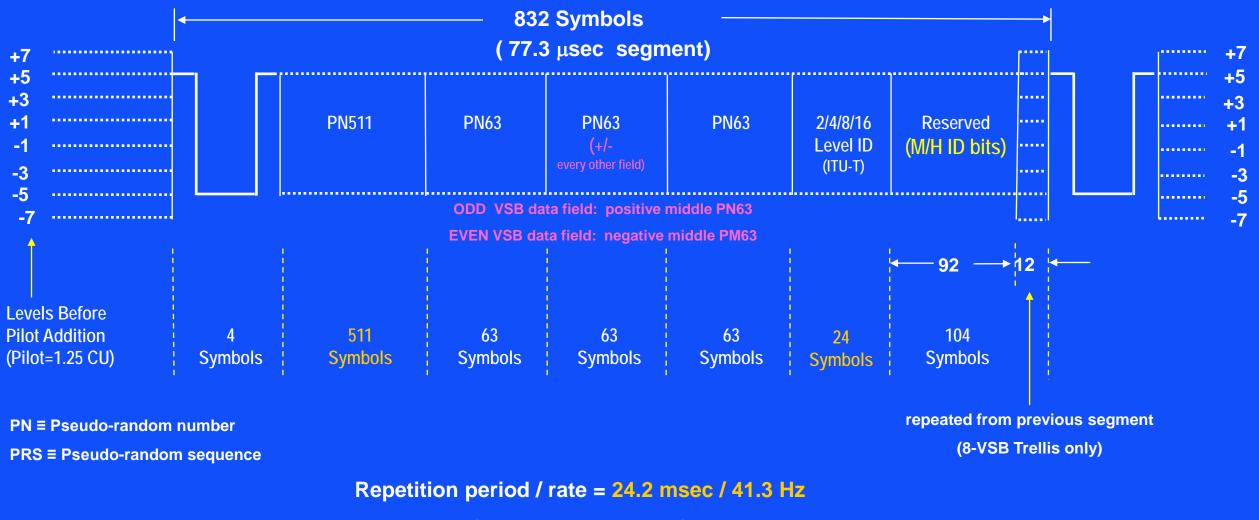
Sgrignoli

See ATSC standard: A/53E


ATSC Legacy Transmission System Overview 8-VSB Receiver Block Diagram


Sgrignoli

See ATSC standard: A/53E


ATSC Legacy Transmission System Overview MPEG Transport Packets: *Fixed* Length (188-byte)

ATSC Legacy Transmission System Overview 8-VSB Baseband Data Segment Format

ATSC Legacy Transmission System Overview 8-VSB Baseband Data Frame Sync Format

(every 313 segments)

Sgrignoli

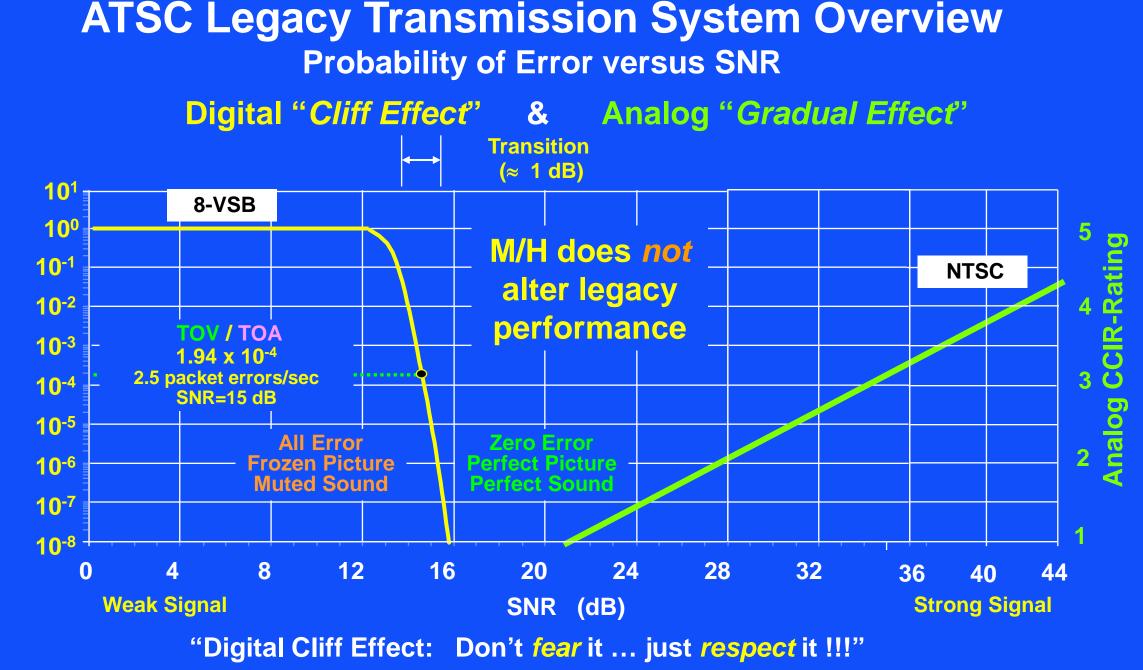
Acts as EQ training signal & initializer as well as randomizer & interleaver synchronizer MSW

22

ATSC Legacy Transmission System Overview 8-VSB Data (Frame Timing Structure)

VSB symbol domain <u>after</u> convolutional data byte interleaving

Overall Data Efficiency = (188/208) x (312/313) = 90%

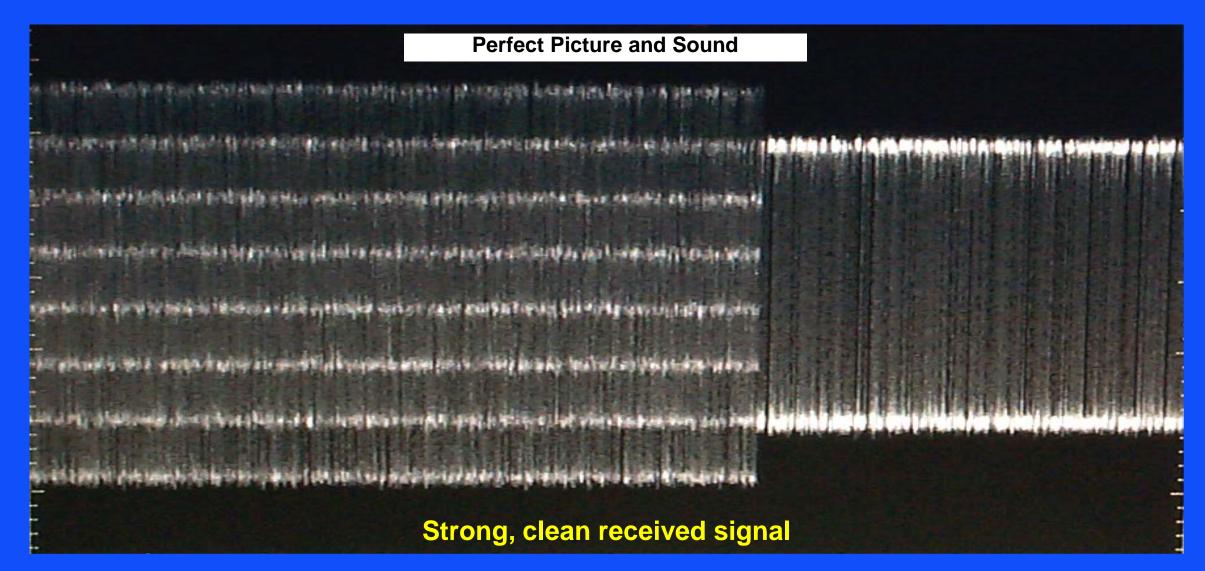

Sgrignoli

(Adding M/H technology does NOT change VSB data frame structure) MSW 23

ATSC Legacy Transmission System Overview 8-VSB System Characteristics

Parameters	8T-VSB	Units
Channel BW	6.0	MHz
Excess BW	11.5	%
Symbol Rate	10.762	MHz
Symbol Period	92.9	nsec
BW Efficiency	3	bits/symbol
Trellis-Coding Rate	2/3	
Net data rate	2	bits/symbol
Reed-Solomon FEC	t=10 (207, 187)	
Segment Length (including sync)	832	symbols
Segment Sync duration	4	symbols
Frame Sync duty cycle	1/313	
Payload Data rate	19.4	Mbps
Spectral Efficiency	≈ 4	bits/Hz
Power Increase from Pilot	0.3	dB
Peak/Ave Power Ratio	6.3	dB (@ 99.9%)
SNR @ Error Threshold	15.0	dB
Burst Noise Threshold	193	μsec

Sgrignoli M/H does NOT alter values for legacy signal; M/H receivers have different payload & SNR (thr) MSW 24



Digital Probability of Error

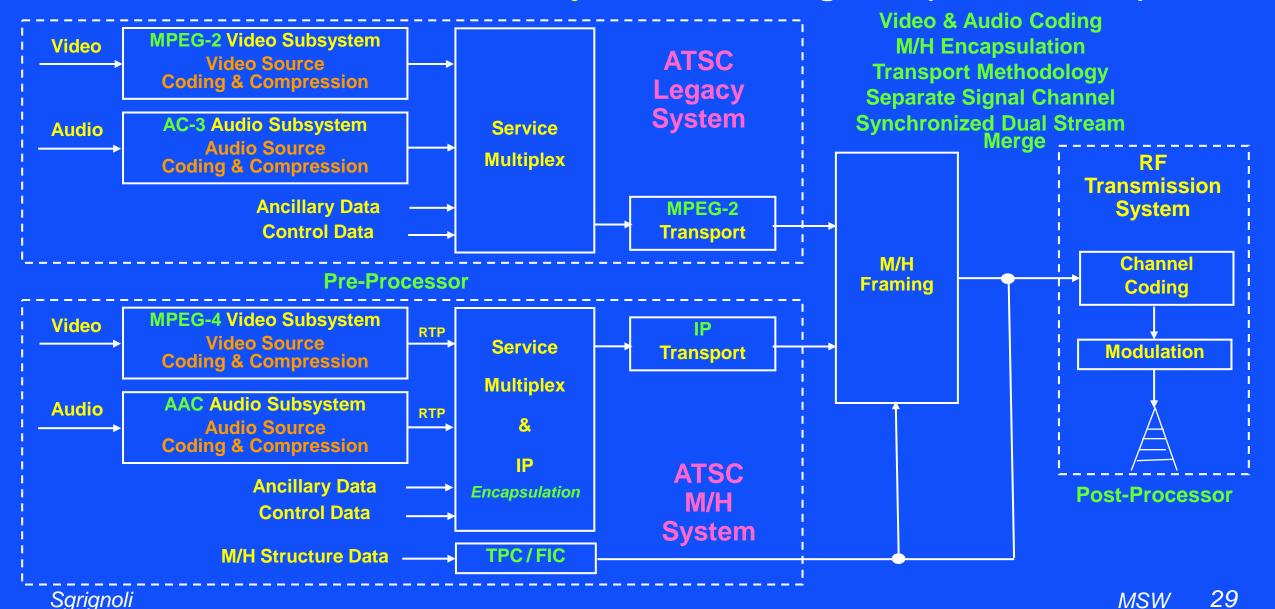

Sgrignoli

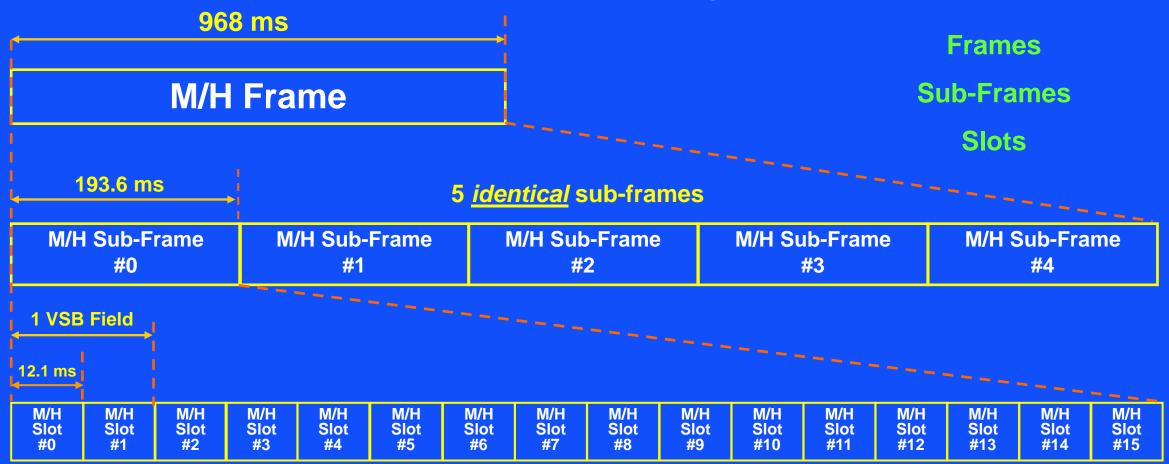
TOV = Threshold Of Visible errors; TOA = Threshold Of Audible errors

ATSC Legacy Transmission System Overview 8-VSB Symbol Output @ 35 dB SNR

ATSC Legacy Transmission System Overview 8-VSB Symbol Output @ 15⁺ dB SNR

Sgrignoli Reed-Solomon, Interleaver, & Trellis-Coded Modulation provide robust reception MSW 27

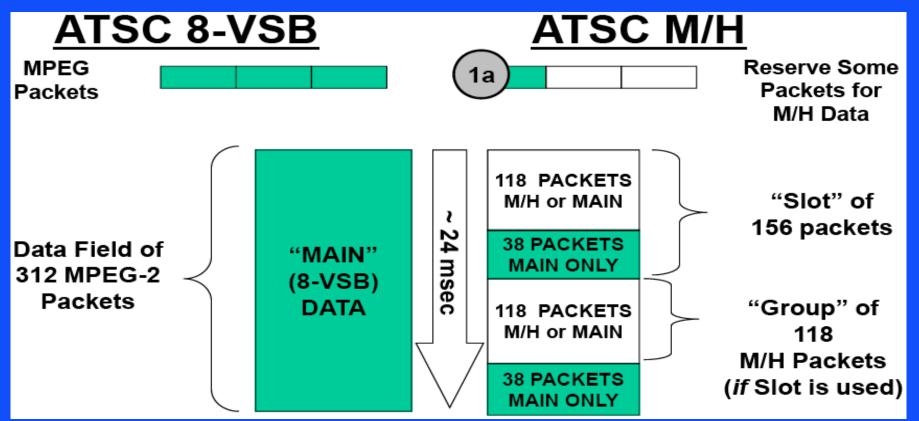

ATSC M/H TRANSMISSION SYSTEM DETAILS


See A/153 at www.atsc.org

ATSC M/H System

Enhanced ATSC Broadcast System Block Diagram (Dual Channel)

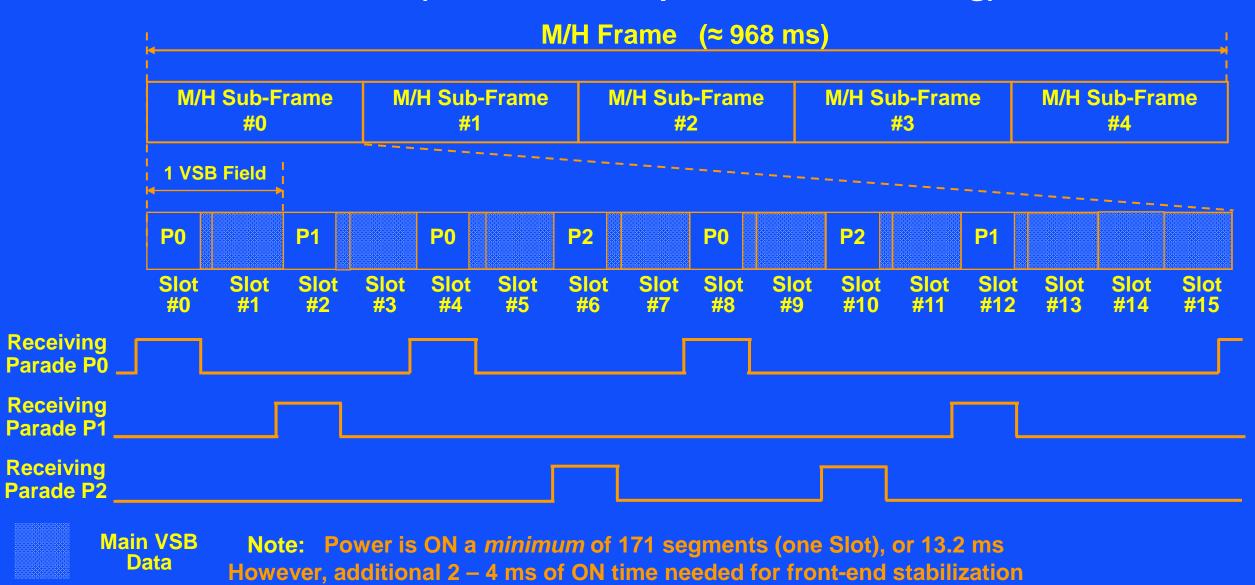
ATSC M/H System M/H Data (M/H Frame Timing Structure)



1 M/H Frame = 5 M/H Sub-Frames = 80 M/H Slots = 40 8-VSB Data Fields Adding M/H technology does *NOT* change VSB data frame structure

Sgrignoli

Note: 2 Slots fit within one 8-VSB Data Field (312 data packets)


ATSC M/H System M/H Data (VSB Frame Timing Structure)

Each Slot has a section for Main packets & one for M/H packets Each Slot may <u>or</u> may not contain M/H data Each Slot carries 156 data packets (156 Main <u>or</u> 118 M/H + 38 Main) 2 M/H Slots transmitted per 8-VSB Data Field M/H Frame *offset* from VSB field Sync by 37 packets

Sgrignoli

ATSC M/H System M/H Data (Parade of Groups with Power Saving)

Burst transmission allows battery conservation

MSW

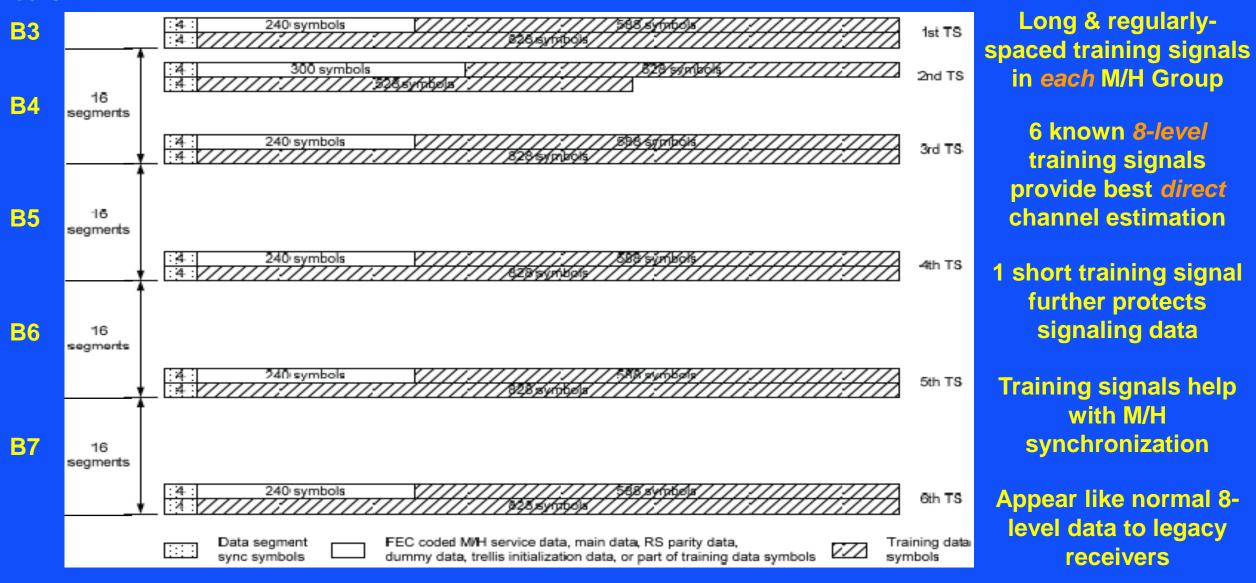
32

Sgrignoli

ATSC M/H SystemQuick M/H Data Calculation for Maximum M/H Data UsageIf all of the Slots were filled with M/H data packets,
Maximum amount of data taken from 8-VSB would be: $F_{M/H DATA}$ (max) = (118/156) * 19.392659 MbpsF_M/H DATA (max) = 14.66400 Mbps(MH payload data + FEC + training signals)

If <u>all</u> of the Slots were filled with M/H data packets, Maximum amount of data left <u>for</u> 8-VSB would be:

 $F_{VSB DATA}$ (max) = (38/156) * 19.392659 Mbps

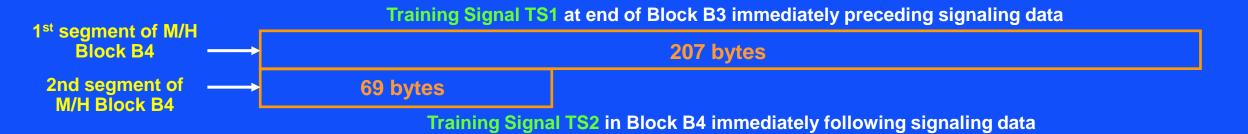

F_{VSB DATA} (max) = 4.723853 Mbps

(VSB payload data)

33

NOTE:NoG can be max value of 8 for one Ensemble, but 2 Ensembles can have total NoG of 16SgrignoliHowever, FCC requires broadcasters to transmit at least 1 free SD programMSW

ATSC M/H System M/H Data (6 Reference Training Signals)



Training signals in every M/H Group within VSB symbol domain

Blocks

Sgrignoli

ATSC M/H System M/H Data (TPC & FIC Robust Signaling)

TPC & FIC transmitted in every M/H Group & heavily coded for extra robust transmission

Transmission Control Parameters (TPC) uses 72 bytes:

10 payload bytes @ 1/4-rate trellis coding = 40 bytes

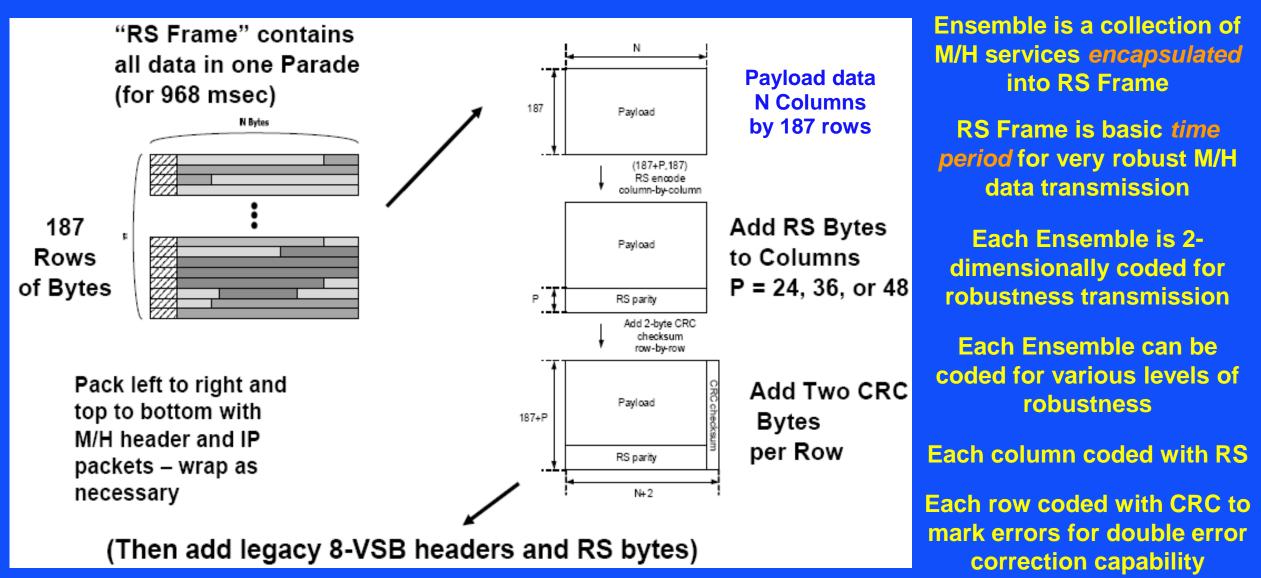
8 RS parity bytes @ ¼-rate trellis coding = 32 bytes

Caries definition of specific transmission parameters for each Parade in an M/H Frame

&

Fast Information Channel (FIC) signaling data uses 204 bytes:

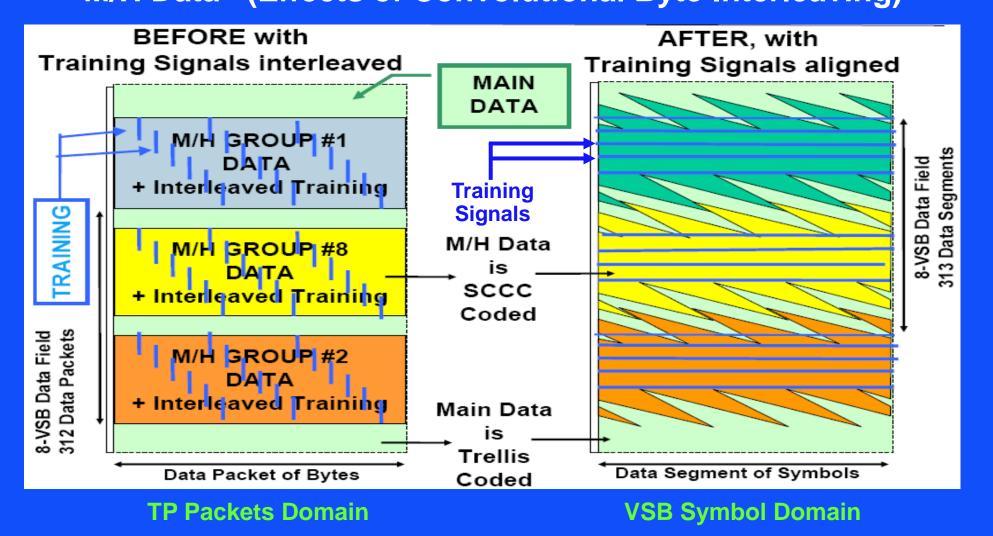
37 payload bytes @ ¼-rate trellis coding = 148


14 RS parity bytes @ ¼-rate trellis coding = 56 bytes

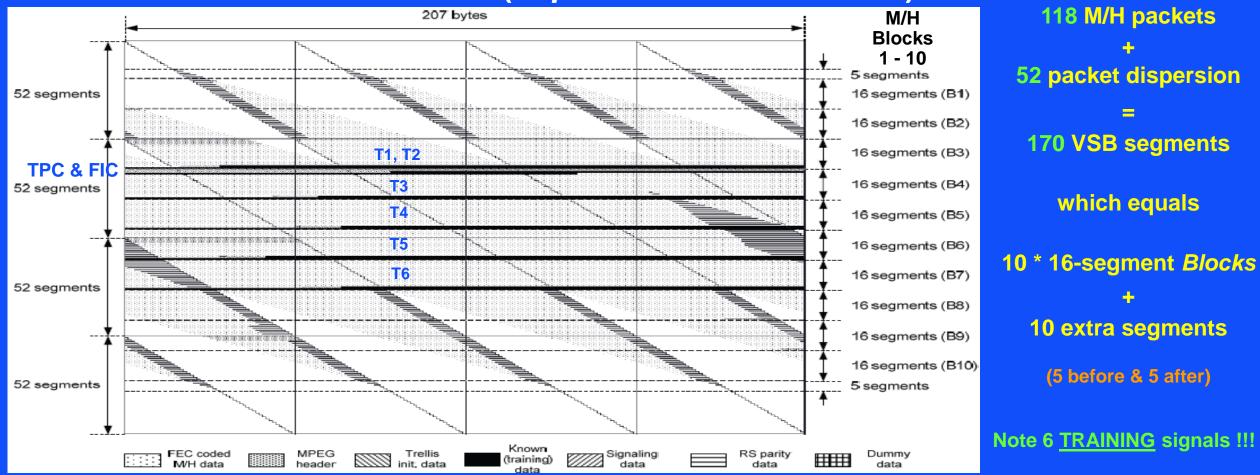
Carries cross-layer Ensemble & service binding info for fast M/H service acquisition

Sgrignoli

Total # of Signaling Bytes per Group: 72 + 204 = 276


ATSC M/H System M/H Data (Ensembles & RS Frame Data Packing)

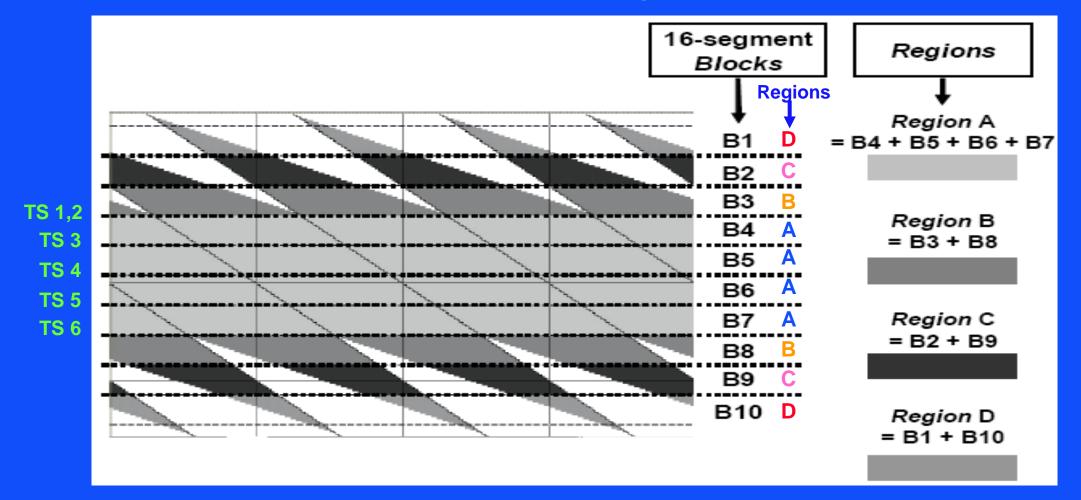
Disperses data over 968 ms rather than just 4 msec for more *burst protection* MSW 36


Sgrignoli

ATSC M/H System M/H Data (Effects of Convolutional Byte Interleaving)

M/H Groups can be dispersed over 170 data segments (118 + 52) Sgrignoli There are regions with: 1) only VSB data, 2) only M/H data, & 3) both MSW 37

ATSC M/H System M/H Data (Separate Blocks B1 – B10)



M/H Block = 16 contiguous post-interleaved segments (*only* in VSB symbol domain)
M/H Blocks either have <u>all</u> M/H data or <u>mixture</u> of M/H data & legacy VSB data
5 segments at beginning & end have legacy RS parity bytes; *not* part of M/H Blocks

Sgrignoli

VSB symbol domain (after convolutional data byte interleaving)

ATSC M/H System M/H Data (Regions)

Regions = different data capacity; depends on presence of training signals, signaling data, or legacy data Regions = different robustness; depends on relative position to training signals

Sgrignoli

VSB Symbol Domain Only

ATSC M/H System M/H Data Calculation (Legacy VSB Data Rate Loss)

Main Data Rate Loss (MDRL)

- MDRL = [118/156] * [NoG/16] * [1/PRC] * 19.392658 Mbps
 - [118/156] is # of M/H data packets to total packets in a Group
 - [NoG/16] is # of Groups used out of 16 Slots per Sub-Frame
 - PRC is Parade Repetition Cycle
 - Constant value 19.392658 Mbps is VSB data bit rate

Comments

- MDRL describes loss of legacy 8-VSB data rate
- No compensation for padding bytes required
- Minimum data rate loss is when NoG = 1 & PRC = 7
- Maximum data rate loss is when TNoG = 16 & PRC = 1

40

MSW

(Parade repeated every PRC Frames)

(in kbps)

(max NoG=8)

ATSC M/H System M/H Data Calculation (M/H Payload Data Rate)

Payload Data Rate (PDR)

• PDR = {[N*187] / [5*16*156*188* PRC]} * 19.392658 Mbps

- N is # of data columns & 187 is # data rows in RS Frame
- 5*16 is # of Slots in M/H Frame (5 Sub-Frames*16 Slots)
- 156 is # of possible data packets in a Slot
- 188 is # of payload data bytes per data packet
- PRC is Parade Repetition Cycle
- Constant value 19.392658 Mbps is VSB payload bit rate

Comments

- PDR describes M/H data rate
- Includes padding bytes & M/H Transport Header bytes
- Minimum data rate is when NoG = 1 & PRC = 7
- Maximum data rate loss is when TNoG = 16 & PRC = 1

(Parade repeated every PRC Frames)

(simple algebraic formula)

(in kbps)

(for one Ensemble, max NoG=8)

Sgrignoli NOTE: NoG can be max value of 8 for 1 Ensemble, but 2 or more Ensembles can have total NoG of 16 MSW 41

ATSC M/H System Possible M/H Data Modes: 102 Total

SCCC Outer Code:	Regions				RS Frame	SCCC Block	ck RS Parity		102 total possible
1/2 or 1/4	(A)	(B)	(C)	(D)	Mode	Mode	Bytes	Modes	data modes, but not
	1/2	1/2	1⁄2	1⁄2	Single, Dual	Separate, Paired *	24, 36, 48	9	all of them are useful
	1/2	1/2	1/2	1⁄4	Single, Dual	Separate	24, 36, 48	6	
	1/2	1/2	1⁄4	1/2	Single, Dual	Separate	24, 36, 48	6	
RS Frame Mode:	1⁄2	1⁄2	1⁄4	1⁄4	Single, Dual	Separate	24, 36, 48	6	Early days of
Single or Dual	1⁄2	1⁄4	1/2	1⁄2	Single, Dual	Separate	24, 36, 48	6	development, 2 most
	1⁄2	1⁄4	1⁄2	1⁄4	Single, Dual	Separate	24, 36, 48	6	commonly used
	1⁄2	1⁄4	1⁄4	1/2	Single, Dual	Separate	24, 36, <mark>48</mark>	6	modes:
	1⁄2	1⁄4	1⁄4	1⁄4	Single, Dual	Separate	24, 36, 48	6	(¼, ¼, ¼, ¼) P48 Paired
	1⁄4	1⁄2	1⁄2	1⁄2	Single, Dual	Separate	24, 36, 48	6	
SCCC Block Mode:	1⁄4	1⁄2	1⁄2	1⁄4	Single, Dual	Separate	24, 36, 48	6	(1/2, 1/4, 1/4, 1/4) P48 Separate
10 separate or 5 pairs	1⁄4	1⁄2	1⁄4	1⁄2	Single, Dual	Separate	24, 36, 48	6	
	1⁄4	1⁄2	1⁄4	1⁄4	Single, Dual	Separate	24, 36, 48	6	
	1⁄4	1⁄4	1/2	1⁄2	Single, Dual	Separate	24, 36, 48	6	Reception can vary
	1⁄4	1⁄4	1/2	1⁄4	Single, Dual	Separate	24, 36, 48	6	depending on:
RS Parity:	1⁄4	1⁄4	1⁄4	1⁄2	Single, Dual	Separate	24, 36, 48	6	Signal strength
P = 24, 36, or 48 bytes	1⁄4	1⁄4	1⁄4	1⁄4	Single, Dual	Separate, Paired *	24, 36, <mark>48</mark>	9	Multipath

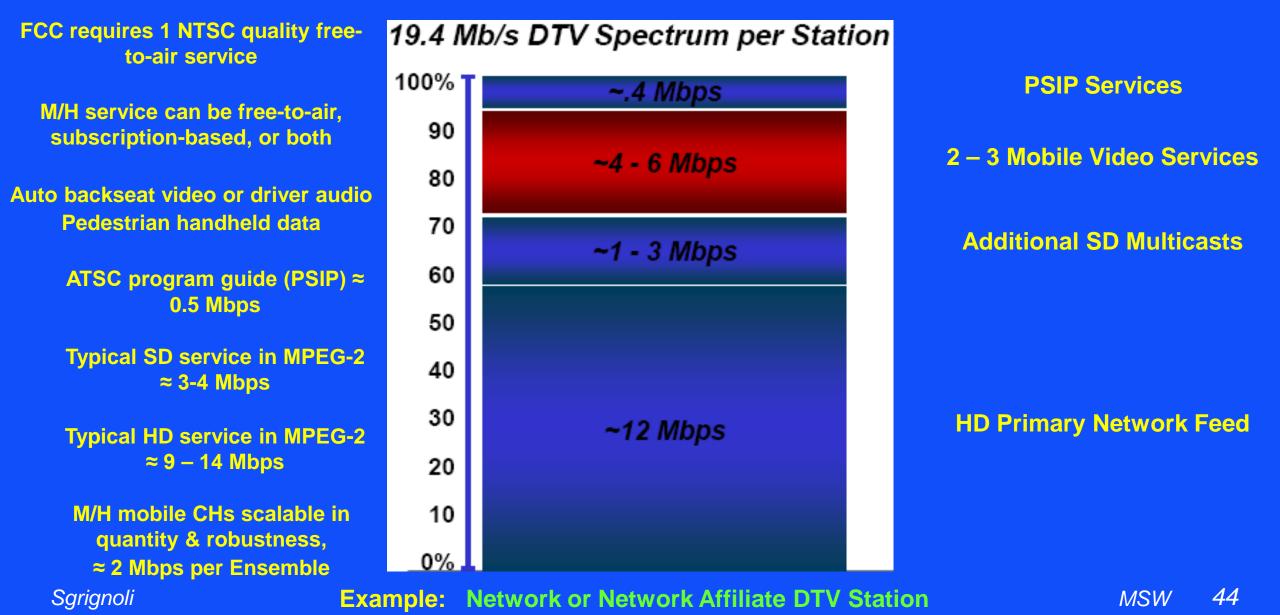
Sgrignoli

ATSC M/H System

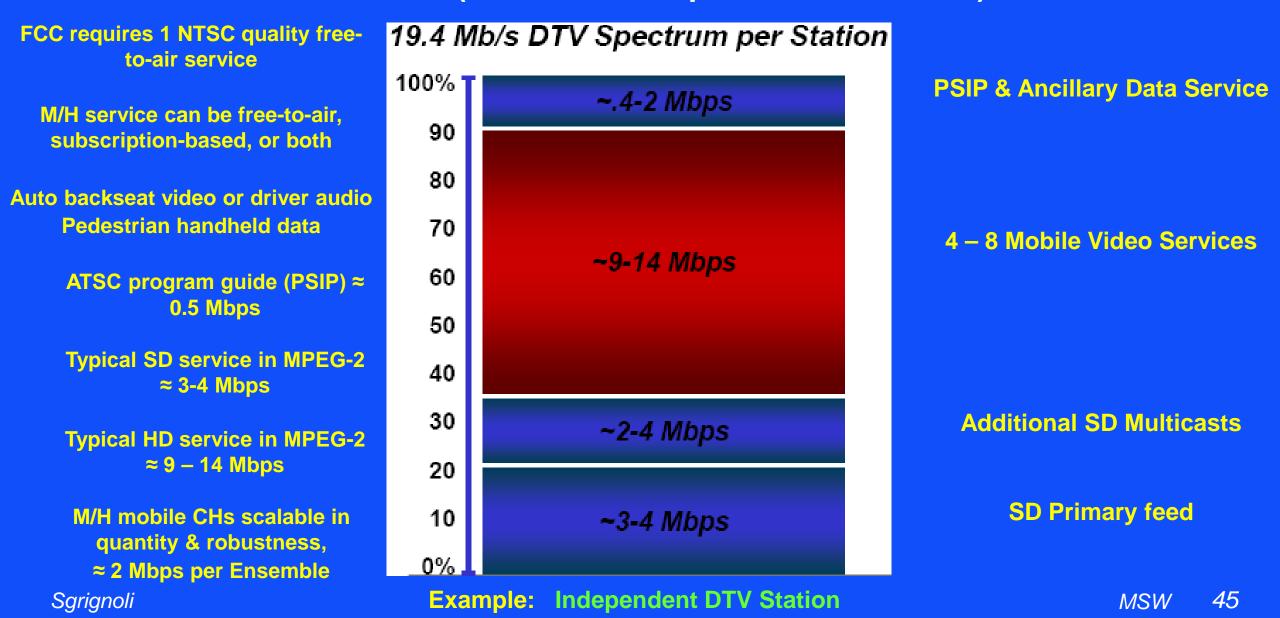
Specific M/H Data Mode Considerations & Tradeoffs

Mode	e Regions				RS Frame	SCCC Block	RS Parity	Data	Payload	
Opt	(A)	(B)	(C)	(D)	Mode	Mode	Bytes	Efficiency	Data Rate	
(#)	(*)	(*)	(*)	(*)	(Single/Dual)	(Separate/Paired)	(#)	(%)	(kbps)	
1	1⁄2	1⁄2	1/2	1/2	Single	Paired	48	34.1	312.2	
2	1/2	1⁄2	1⁄4	1⁄4	Single	Separate	48	30.5	279.8	
3	1/2	1⁄4	1⁄4	1⁄4	Single	Separate	24	29.2	267.4	
4	1⁄2	1/2	X	Χ	Dual	Separate	48	27.0	247.3	
5	1/2	1⁄4	1⁄4	1⁄4	Single	Separate	48	26.1	239.6	
6	1⁄4	1⁄4	1⁄4	1⁄4	Single	Paired	24	18.9	173.1	
7	1⁄4	1⁄4	1⁄4	1⁄4	Single	Paired	48	16.9	154.6	
8	1⁄4	1⁄4	X	Χ	Dual	Separate	48	13.3	122.1	

Remember that this payload data rate is for NoG = 1

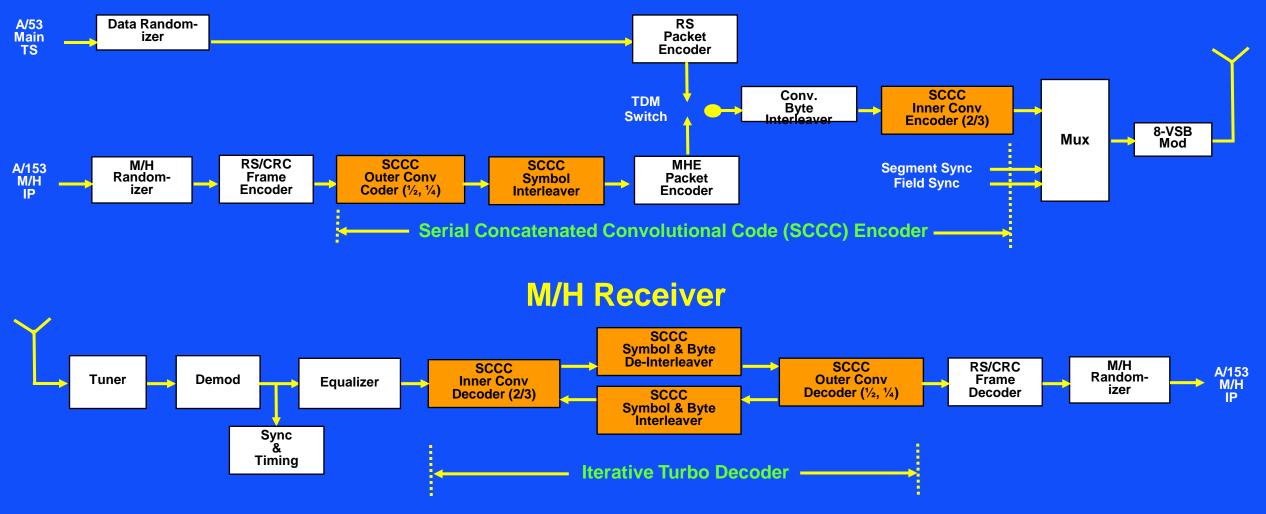

Can increase by factor of 8

43


DRL = 917 kops; Options 5 & 7 are most commonly

Opt 1 highest data rate, but least robust; Opt 8 lowest data rate, but most robust Opt 2 has 16.8% higher data rate than Opt 5, but only slightly less coverage Opt 3 has 11.6% higher data rate than Opt 5, but only moderately less coverage Opt 6 has 12.0% *higher* data rate than Opt 7, but only slightly *less* coverage Opt 4 has 3.2% higher data rate than Opt 5, but only slightly more coverage Opt 8 has 21.0% lower data rate than Opt 7, but much better coverage, plus secondary RS Frame data available for less robust applications Sgrignoli MSW

ATSC Mobile System M/H Data (General DTV Spectrum Allocation)



ATSC Mobile System M/H Data (General DTV Spectrum Allocation)

ATSC Transmission System Enhancements Simplified M/H Transmitter & Receiver

M/H Transmitter

Sgrignoli

Note: A/153 M/H Standard only dictates transmitter output signal requirements; M/H receiver manufacturers are free to implement compatible receivers in their own manner.

MSW

46

ATSC Mobile System M/H Data (RF Performance Lab Results)

	8-VSB	M/H	M/H	M/H	M/H
	(A/53)	(A/153)	(A/153)	(A/153)	(A/153)
		¹ ⁄2 -Rate (Regions A & B)	¹ ⁄ ₂ -Rate	Mixed Rate	¹ ⁄4-Rate
Required SNR (dB)	15	7.4	7.9	7.3	3.4
Doppler	≈ 10	150	80 *	140	180
Rate (Hz) ≈ = max mph with complex Echoes (TU-6)	(depends on Rx)				

Additional FEC provides lower SNR error threshold Additional training signals provide faster dynamic multipath tracking

M/H FIELD TESTING SUMMARY

ATSC Mobile System Mobile Field Test Vehicle Example

Sgrignoli

MSW Mobile DTV Field Test Van with 5 kW generator

ATSC Mobile System Mobile Field Test Vehicle Example

Sgrignoli

MSW Mobile DTV Field Test Van with easy access

ATSC Mobile System Mobile Field Test Vehicle Example

Sgrignoli

MSW Mobile DTV Field Test Van with appropriate test equipment

ATSC Mobile System OMVC Mobile Field Testing Data Set (2009 – 2010)

System Performance	Different Cities with Varying Terrain							
TYPE OF FIELD TEST	Atlanta	Seattle	San Francisco	Wash. DC 1, 2, 3		TOTAL		
Different Reception Conditions (hrs)	15	27	7	148		197		
Pedestrian <i>(sites)</i>	351	321	101	910		1683		
Various Coding Rates (hrs)	46	81	14			141		
Multiple Ch. <i>(hrs)</i>	15	27		148		190		
VHF Reception <i>(sites)</i>				12	19	31		
UHF Reception (sites)				88	512	600		
On-channel Repeater (hrs)				2160		2160		
RF captures (#)				290	225	515		
Production Devices (sites)				962		962		

OMVC identified # of physical layer performance areas needing testing

Large sample size of field data from various U.S. cities for broadcaster confidence

Sgrignoli

52

ATSC Mobile System Field Test Logistics Summary

- Non-optimum Tx conditions available during field tests, such as:
 - Tx Location
 - Tx ERP
 - Tx antenna HAGL
 - Tx polarization
- 1st & 2nd generation M/H receivers used during field tests
 - Still being optimized for sensitivity & multipath
 - Handheld antenna geometries and gains / losses still being improved
 - Data rate often optimized for small phone screen rather than larger tablet screen

Sgrignoli

ATSC Mobile System Field Test Results Summary

- Signal strength is still main issue; multipath is a secondary issue
- Terrain effect on mobile reception
 - Most terrains, outdoor mobile antenna worked well within 30 miles
 - Very hilly terrains struggled with signal strength

(repeaters would help)

MSW

- Pedestrian & indoor results
 - Phones with extendable antennas worked if S > -60 dBm (indoor or outdoor, moving or still)
- Code rates
 - ¹/₄-rate (¹/₄, ¹/₄, ¹/₄, ¹/₄) code performed *slightly* better than mixed rate (¹/₄, ¹/₄, ¹/₄, ¹/₄)
 - 3.5 4 dB better white noise threshold only translated to 3% 5% more coverage
 - ¹/₂-rate (½, ½, ½, ½) code did *not* perform very well Sgrignoli

54

54

ATSC Mobile System Field Testing Results Summary (cont)

- Multiple channel operation
 - Performed well if Tx sites reasonably close as well as comparable ERP & HAGL
 - Pedestrian reception more challenging than mobile (need repeaters, better antennas, E-POL)

High-VHF operation

- Not enough data for statistical relevancy
- Results were better for mobile than pedestrian

(longer antennas & outdoors)

55

ATSC Mobile System Field Testing Results Summary (cont)

- On-channel repeater (OCR) operation
 - Improved both outdoor & especially indoor reception
 - DTS echoes were handled by mobile receivers (occasional echo failures for > 70% amplitudes)
 - Legacy 8-VSB receivers less robust to DTS echoes
 - Sometimes had difficulty with > 40% DTS echoes
 - Performance varied significantly with make & model of DTV receiver

C-POL versus H-POL reception comparison

- Mobile reception (N/4 vertical whip) had significant improvement with C-POL (~10 dB)
- Outdoor pedestrian reception had slight improvement with C-POL (=4 dB)
- Indoor pedestrian reception had no improvement with C-POL (~0 dB due to de-polarization)

ATSC Mobile System Field Testing Results Summary (cont)

- RF Captures
 - Captures fed conductively into prototype Rx had thresholds between -78 & -84 dBm
 - Same signals fed into phone with internal antenna had 15 20 dB penalty
 - Most likely due to poor antenna efficiency & random orientation of antenna
- Prediction models
 - 3 prediction modes: mobile, indoor pedestrian, outdoor pedestrian
 - Based on TIREM propagation model using empirical correction factors (from field testing)

57

57

MSW

- Model uses following signal strength levels for predicting service at ¹/₄-rate mode
 - 82 dBµV/m for *indoor* pedestrian
 - 72 dBµV/m for outdoor pedestrian
 - 55 dBµV/m for mobile (fixed external antenna)

BROADCASTER RECOMMENDATIONS

ATSC Mobile System

Recommendations for ATSC M/H Service Deployment

UHF service typically better than VHF service.

- Propagation better suited for building penetration
- Spectrum noise level much lower at UHF, worse at VHF
- Rx antenna performance degraded at VHF (mobile better than handheld due to larger antenna)
- Low-VHF is <u>not</u> recommended

Transmitter antenna located at highest elevation & closest to population

- M/H highly dependent on "line-of-sight" to horizon
- Change location or build new tower
- Change from side-mounted to top-mounted antenna
- Increase beam tilt (more signal at close-in indoor sites without increasing interference)
- M/H service based on different planning factors than terrestrial DTV service
 - Rx antenna height: 4' to 6' AGL versus 30' AGL
 - Rx antenna gain: -15 dBd to -3 dBd versus +10 dBd

Sgrignoli

Remember current FCC freeze on minor TX changes

MSW 59

(even community tower)

(less pattern scalloping)

ATSC Mobile System Recommendations for ATSC M/H Service Deployment

Use maximum authorized ERP with lower antenna gain & higher Tx power

- Minimize close-in nulls & shadowed areas
- Goal is coverage saturation, *not* distance

Radiate highest quality signal

- High SNR/MER
- Low-phase noise pilot carrier
- FCC-compliant adjacent channel emissions
- In-spec symbol clock frequency & jitter
- Do NOT throw away <u>any</u> packets

(minimize signal fading)

(maximum field strength important)

(>30 dB, but overkill *not* needed)

(ATSC recommendation or better)

(FCC mask)

(ATSC recommendation)

(ATSC recommendation; e.g., ASI-to-SMPTE 310M converters)

Remember current FCC freeze on minor TX changes

ATSC Mobile System <u>Recommendations</u> for ATSC M/H Service Deployment

- Include both horizontal & vertical polarization at Tx.
 - M/H reception is highly dependent on vertically-polarized Rx antennas
 - Will provide more coverage with both H-POL & V-POL
 - Reduce time-varying signal fades
 - Simplify Rx antenna sensitivity for successful reception (location & orientation)

Combine elliptically/circularly-polarized Tx antennas rather than use separate H & V antennas

- Signal de-polarization can be expected, especially for handheld reception inside buildings
- Separate Tx antennas may lose quadrature time phase relationship

Sgrignoli

MSW 61

(also helps terrestrial reception)

ATSC Mobile System Recommendations for ATSC M/H Service Deployment

Consider use of DTx (distributed transmission) network

- Single-frequency networks (SFN) or On-Channel Repeaters (OCR)
- Multiple repeater sites in single frequency network can provide coverage in shadowed areas (terrain or man-made)
- Provide larger coverage area for mobile viewer without resorting to channel changes to continue reception
- Provide better coverage inside buildings
- However, care must be taken to not degrade local legacy receiver reception

62

MSW

Plan for system redundancy from beginning of M/H service.

• M/H is truly a wireless service

• No CATV or satellite service will be carrying broadcaster's signals Sgrignoli

CLOSING THOUGHTS

ATSC Mobile DTV Summary

TV stations on-air

- Many stations on the air across country with M/H signal
- \$120k \$150k station equipment investment to transmit M/H

Broadcasters' one-to-many transmission model is key aspect.

Most efficient & reliable use of spectrum / bandwidth

(no system traffic overloads)

- No use of data plans
- Reliable in crises
 (e.g., hurricanes, tornadoes, earthquakes, terrorism)

Two mobile broadcast groups exist, with possible future merger

- Mobile Content Venture (MCV) with "Dyle" branding
- Mobile 500 Alliance with "MyDTV" branding

Consumer Devices

• Tablet (RCA), tablet/phone dongles (Elgato, Escort, Belkin), Cellular phone (Samsung Galaxy) Sgrignoli Must overcome "chicken & egg" problem between broadcasters & consumer manufacturers MSW 64

THANK YOU

Gary Sgrignoli: gary.sgrignoli @ ieee.org MSW Website: www.MSWdtv.com

65

MSW