

Structural Evaluation of Pipe Leg Tower and the Engineering and Execution of Controlled Demolition of Guyed Towers

Your Single Source For Broadcast Solutions

ANSI/TIA-	1019-A-201	1:	-				
		ANSI/TIA-1019-A-2011 APPROVED: Aug. 29, 2011	e.				
	ANSI/TIA STANDARD		L				
	Standard for Installat Maintenance of Antenna Su Antennas	ion, Alteration and upporting Structures and	L				
A DESCRIPTION OF THE REPORT	TIA-1019-A	Aug 29, 2011					
人名英格兰人姓氏 医马克尔氏		Aug. 20, 2011	1 A				
法法法法法法 化二乙烯酸化合			10.00				
A REPORT OF THE PARTY				1.1.1			
			1.1	10 × 11 0 20 × 20			
	TELECOMMUNICATIONS						
	INDUSTRY ASSOCIATION					÷.	
	TR14.7 Sub-committee			101		0 -	
	tiaonline.org			0.0(1)	$K \times K$	0 0	1.1.0
			6 × 10	0.0.0		40	
	•			0.0.1	 	0.0	
				0	0 = 0	- 0	0 0 0
			00	000	0, 9, 9	- 0	+ 0.0
			00	0.0 = 1	0 0 ·	• 0	000
	Approved Auc	ust 2011		000	0 0 0	00	0 0 0
		000000000000000000000000000000000000000		0000	000	0 0	100
					0.0	0.0	0.00

TIA-1019-A Minimum Strength Req's:

Loads to be Considered:

1) Operational Loads:

*Rigging System Loads During Construction *Uniform 30MPH Wind

2) Non-Operational Loads:

*Rigging System Loads Applied While Construction is NOT in Progress (i.e. Overnight, Down Days, etc.)

*Reduced Wind Load Ranging Between 50-100% of Design Wind Speed (Not Exceeding 90MPH)

*Non-Operational Loads Generally Govern

Minimum Strength Conditions:

If a tower cannot be verified with a reasonable degree of engineering to meet minimum strength conditions of TIA 1019-A, personnel should **NOT** be on or around the tower during construction.

This situation leaves very limited

options

Subject Project:

- 490' Guyed Tower Located in Congested Residential Area (6 Guy Levels/50% Guy Radius)
- Local Crew Noted Severe Corrosion While Preparing to Rig Tower for an FM Install
- ERI Conducted Initial Climbing Inspection and Condition Assessment
- Performed Deterioration Analysis of Tower in Accordance with TIA-1019-A
- Prepared Engineered Rigging Plan to Safely Deconstruct Mast ~ Controlled Drop
- Executed Plan With Onsite Engineering Supervision

Congested Residential Area:

Homes Within 200'

Inspection & Condition Assessment:

Inspection Tools:

Your Single Source For Broadcast Solutions

*Ultrasonic (UT) / FO Borescope:

*3 lb Sledge:

. . .

Deterioration Tower Analysis:

*Reduced Buckling Strength Calculated

Strength Reduced by Over 50%!!!

*Multiple Analyses Were Conducted to Determine Method for Dismantling

- First Choice ~ Light-Weight Gin Pole

Dismantling Considerations (TIA-1019-A):

- Structure must be capable of safely resisting construction loads imposed by Rigging System during de-stacking operations (i.e. Gin Pole, Slings, Blocks, etc.)
- Rigged tower must be capable of withstanding minimum wind forces of 45 mph to 60 mph during non-operational times depending upon duration of de-construction period

- MAJOR LOAD TO CONSIDER ~ Gin Pole

																÷.						- 14		12						2			9 (.)				1							
														÷			1							×.	ł.	1.1	Ċ,		0	i.	1	0	6	1	.0		÷					* 1		
														3			×	à.				1.1		÷		+ 1			0	į.		0			0				8	į.	10	а.	8.1	
																		0				0	0	0.	х.	0.					6	0	0.	. 0	0		0			1.9		4	1	
													÷		$\hat{\mathbf{g}}$	a.	÷.				6	• 10	0	1		a (1	i.i		0	i.	0	0.1	1.0	1	0	÷		11	1.0			6	è
	1.1												×.		0	×.						0 0	0	0	0	1.		0		¢.		6	i.	1	0	10	÷	10			0	1	i.	0
															0	э.	0		r.	0	0	i i			0		6.5		4	4	0	0	0	0	0	.0	8		81.1	1.10	-0	0.1		
															÷	6		÷.	6		6	- 10	0		0	6.1			i.	5			0	. 0		0	÷.			6.6	0			
														0	0	ò.	0	5	0		0 1	0.0	0	6	0	0 1	1		0	0	0	0	0 6	0 6	0	0	0	0		6.1	0	0	0	0
														0	0	0	0			13		5 0	0		0	0.0					0	0	0 0	0	0		0	0			0		0	
h	1.													0	é		ŝ.			0			0	0		0 0		0	0		6	0	0.0	10			6		6.	1.10	i.	6	6	ő
												5	-		a.	0	0					5 6	0		0				1					1		1	8			. 0				5
	0.0	0											ñ	0		6	0	2		3		5.6	0		0				5		0			1.0	6		0	0	0		0	2	0 1	ŝ
			0			1									8	0				0		. 0	0	0										1 0	0			8	0 1		0	6	8	0
	-							1.00																							-	100	-	-						ALC: 100			-	

Controlled Demolition Selected:

Structure Could **NOT** Withstand the Minimum Construction Loads for Conventional De-Stack

tnxTower	Job #30565 * ASRN 1059666	Page 1 of 14
Electronics Research, Inc. 7777 Gardner Road	Project Prichard, AL (Mobile County)	Date 19:05:33 04/06/13
Chandler, IN 47610 Phone: (812) 925-6000 FAX: (812) 925-4030	Client Clear Channel	Designed by James Ruedlinger

Section	Elevation	Size	Ratio	Ratio	Ratio	Comb.	Allow.	Criteria
No.	*		P	<u></u>	<u></u>	Stress Ratio	Stress	
T1	489 - 469	PIPE 2 X-STR	0.375	0.000	0.000	0.374	1.000	
T2	469 - 449	PIPE 2 X-STR	0.509	0.000	0.000	0.373	1.000	m-sv
T3	449 - 429	PIPE 2 X-STR	0.519	0.000	0.000	0.509	1.000	m-s
T4	429 - 409	PIPE 2 X-STR	0.484	0.000	0.000	0.519	1.000	m-s
T5	409 - 389	PIPE 2 X-STR	0.521	0.000	0.000	0.484	1.000	HI-3 -
T6	389 - 369	PIPE 2 X-STR	0.551	0.000	0.000	0.521	1.000	m-sv
T 7	369 - 349	PIPE 2 X-STR	0.640	0.000	0.000	0.001	1.000	m-s
TS	349 - 329	PIPE 2 X-STR	0.639	0.000	0.000	0.640	1.000	HI-3
T9	329 - 309	PIPE 2 X-STR	1.328	0.000	0.000	1 328	1.000	HL3 X
T10	309 - 289	PIPE 2 X-STR	0.690	0.000	0.000	0.690	1.000	H1-3
T11	289 - 269	PIPE 2 X-STR	0.677	0.000	0.000	0.677	1.000	H1-3
T12	269 - 249	PIPE 2 X-STR	0.678	0.000	0.000	0.678	1.000	HI-3 V
T13	249 - 229	PIPE 2.5 STD	0.601	0.000	0.000	0.601	1.000	HI-3
T14	229 - 209	PIPE 2.5 STD	0.616	0.000	0.000	0.616	1.000	H1-3
T15	209 - 189	PIPE 2.5 STD	0.580	0.000	0.000	0 580 1	1.000	HI-3 V
T16	189 - 169	PIPE 2.5 STD	0.581	0.000	0.000	0 581	1.000	HI-3 V
T17	169 - 149	PIPE 2.5 STD	0.665	0.000	0.000	0.665	1.000	HI-3
T18	149 - 129	PIPE 2.5 STD	0.676	0.000	0.000	0.676	1.000	HI-3
T19	129 - 109	PIPE 2.5 STD	0.650	0.000	0.000	0.650 🖌	1.000	H1-3 🗸
T20	109 - 89	PIPE 2.5 STD	0.651	0.000	0.000	0.651	1.000	H1-3
T21	89 - 69	PIPE 2.5 STD	0.725	0.000	0.000	0.725	1.000	HI-3
T22	69 - 49	PIPE 2.5 STD	0.739	0.000	0.000	0.739 🗸	1.000	H1-3 V
T23	49 - 29	PIPE 2.5 STD	0.693	0.000	0.000	0.693 🗸	1.000	H1-3 V
T24	29-9	PIPE 2.5 STD	0.701	0.000	0.000	0.701	1.000	HI-3
T25	9-8.1146	PIPE 2.5 STD	0.625	0.329	0.000	0.954	1.000	HL-3
T26	8.1146 - 6.5729	PIPE 2.5 STD	0.638	0.064	0.000	0.702	1.000	H1-3
T27	6.5729 - 5.0312	PIPE 2.5 STD	0.623	0.091	0.000	0.715	1.000	H1-3
T28	5.0312 - 4	PIPE 2.5 STD	0.624	0.124	0.000	0.748	1.000	HI-3

Your Single Source For Broadcast Solutions

Due to Adjacent Homes, Roads, and Electrical Lines; **Tower Had to Fall Within 150' Radius**

Relaxation & Removal of Pre-Determined Guy Cables in a Sequential Order Based Upon Results of Dismantle Analysis

ŀ																						
			÷						10													
ŀ		÷.				2								1								
			ŝ		a,	ä			6	ij.		0		4				÷		÷.		
	+			×	4	1		1	0			0				4	÷		1	а.	.0	
	0	1		1				0	0		0	0		0					10	4		1
	-	0	ų,	÷.		0	÷.	0	0	÷.		1	0				ÿ.	0			÷	ł
þ.			0	0		0	1		÷	3	0	0	0	÷	$ 0\rangle$		÷		0	1	1	0
b				1	0	4	0	0	0	×	0	0	0	4			0	8	0	1	0	0
þ.	÷.	2			Ű.	5	а.		0		0	0	Ū.	0	1		÷.	0	0	ò	0	0
b	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0	4	0		0	0	0	0
þ	0	0	0	8	3	÷	0	0	0	0	0	0	0	0	0	9	ii.	8	0	÷	0	0
6	0	0	0	0	0	ė	Ū.	0	0	0	0	0	0	6	0	0	÷	0	0	0	0	0
b	0		•	6	8	0			0	0		0	0	0	0	0	0	0	0	0	0	0
ø	0	0	0	0	Ð	0	0		0	0	0	6	0	0	0	0	ė	0	0	1	0	0
6		0		0	0		0		0	0	0	0	0	ø	0	0	0	0	0	0	0	0

Your Single Source For Broadcast Solutio

Certain Guy Cables Were Disconnected From Anchors While Others Remained Intact Until The Critical Failure Point Was Reached

Initial Fall Sequence:

Your Single Source For Broadcast Solutions

Secondary Collapse Mode:

Important to Control Initial Descent

RESULTS:

*Tower Collapse Directed Towards SW Guy Path

*Fall Radius Limited to ~125'

Video Footage:

Special Concerns With Pipe/Tubing:

- Galvanizing:
 - If Pipe is NOT Properly and Uniformly Galvanized, Dramatic Loss of Material Can Occur in a Relatively Short Period Especially in Highly Corrosive Environments
 - Post-Galvanizing Welding Can Damage Internal Zinc Deposits at and Around Welding Area
- Adequate Ventilation/Drainage Holes:
 - Needed to Prevent Excessive Condensation
 - Allows Direct Drainage for Any Moisture Accumulation
- Thin Walled Sections:
 - Become Compromised With Relatively Small Amounts of
 - Material Loss
 - Early Detection is Critical

Galvanizing Process:

*Adequate Flow and Drainage is Crucial in Uniform Coatings

.

-

Galvanizing Issues:

<u>Your Single Source For Broadcast Solutions</u>

*Recessed Design ~ Good Drainage

*Butt Design ~ Poor Drainage

*Pickling Acid Does Not Fully Drain Which Can Result in Poorly Coated Areas

Galvanizing Issues:

Galvanizing **NOT** Uniformly Deposited on Internal Portions of Pipe

4	1											н,		0	η.					0	0	0	0	0			0 0		0	ł.	0	8	8.	0	0.1		ē.)(K. I	1.9		0		1
÷	ų.				6									0	2	63			1 0	1÷	Ē	8	0	0	ε.	1	1	1	÷	0	0	0	×.	0	0.1	0.1	ŧ.	63	e e		0	1	0
۰.					1						6			0.		0.	i d		1.0) <u>H</u>	0	0	0	0	ė, i	0.1	1	0	5	0		0		0	0.1	b i i	i o	0.5		0.0	0	0	0
÷.						0.1						0	0	0	0	0.1	1		1	0	0	0	ġ,	0	0	0 1	0	0	0	0	9	0	0	0	0	6.6	11	6.7	1 0	1	0	0	0
8	0.1												0	0	0 (61	1	6.0			0	0	0	0	0	5.1	i i	1	×.	0	0	0	0	0	0 (b'it	1.1	63	6.6	1	0	\mathbf{r}	0
												0	0	ě.	0.1	6.6			0		0	0	0		0	0.1		.0		0	0	0	0	0	0.1	6.4	1.1	. (0	0	0	0
0											10	0	0	0	0	0 (0	0	6	0	0	ē.	0					0		8	0	0	8	0.1	6.1	1.1	0.1	1 0	0	0	0	0
0	0										a.		0	8	0	0 1		1	. 0		0	0	0	0	0	9 6	0 0	8	0	0	6	0	0	0	6 (b'it	1.1	6.0			0	2	0
0												0		8	0 (1	0	0	0	0	0	0	0.1	0.0	0	0		0		0	0	0	0 (j, i	0 (10	0	0	0	0

Adequate Ventilation/Drainage Holes:

Your Single Source For Broadcast Solution

*Ventilation ~ Ensure Pipe's Interior Environment Adjusts Quickly With External Changes in Temperature, Relative Humidity, and Atmospheric Pressure to Prevent Excessive Condensation

*Drainage ~ Ensure Any Accumulated Moisture May Easily Flow Out of Pipe

Adequate Ventilation/Drainage Holes:

*Freeze/Thaw Damage

Thin Walled Sections:

<u>Your Single Source For Broadcast Solutions</u>

*Relatively Small Amounts of Material Loss Can Be Critical to Member's Load Carrying Capability As Compared to Solid Steel Sections

Aging Broadcast Infrastructure:

- Thousands of Pipe/Tube Structures Well Over 20 Years Old Currently In Service
- Ongoing Maintenance Inspections By Qualified Personnel Are Critical To Extending Serviceable Life As Well As Determining When To <u>Safely</u> Decommission Tower
 - Guyed Towers ~ Conduct Thorough Inspection At Least
 - Every 3 Years
 - Self Support Towers ~ Conduct Thorough Inspection At
 - Least Every 5 Years
 - If Site Specific Issues Exist (Such as Corrosion) Inspection Frequency Should Be Increased

Bonus Footage

Questions?

