# Advantages of Aluminum Transmission Line

Manuel Sone Electronics Research Inc. Chandler, Indiana

## Advantages of Aluminum Transmission Line

**Theft** Cost & Price Geometry Support System

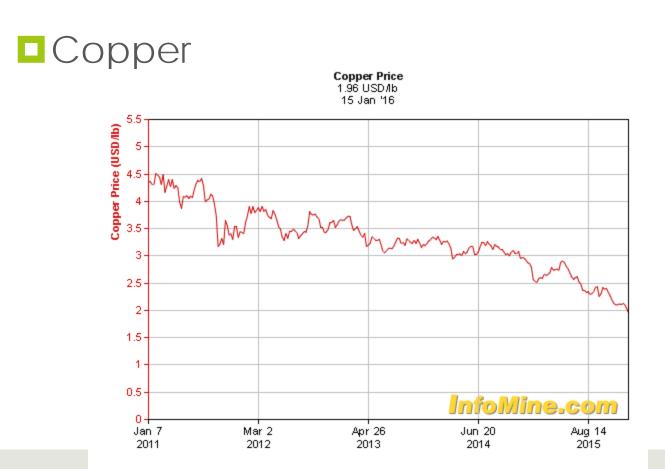


## Advantages of Aluminum Transmission Line

#### Power

# Thermal Expansion

#### Insertion Loss




## Theft

# One \$Billion Worth of Copper is Stolen Annually



#### Cost & Price



#### Cost & Price

Jan 7

2011

#### Aluminum Aluminum Price 0.67 USD/lb 15 Jan '16 1.4 $\sim$ ma 0.7 0.6 0.5 0.4 0.3-0.2 0.1 infoMine.com 0-

Apr 26

2013

Jun 20

2014

Mar 2

2012

Aug 14 2015

#### Geometry

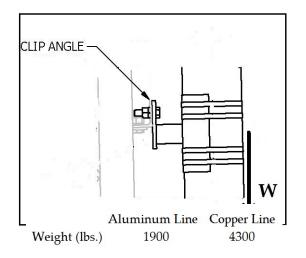
#### Aluminum or copper tolerances usually outperform specifications.



#### Corrosion

#### Nickel Plated Parts, Hardware coated with molybdenum disulfide




## Installation

# Aluminum line weights less than 44 percent of copper



#### Support System

# The top stick must be supported with a fixed rigid hanger



|          | Rigid<br>Hanger | Slip<br>Hanger | Spring<br>Hanger | Lateral<br>Guide |
|----------|-----------------|----------------|------------------|------------------|
| Copper   | 1               | 97             | 45               | 2                |
| Aluminum | 1               | 97             | 23               | 2                |

#### Power

#### Peak and Average Power



In Cu/Cu transmission line systems the inner gets warmer than the outer conductor, resulting in differential expansion



The temperature expansion coefficient of aluminum is approximately 35% higher than that of copper



#### CALCULATIONS WITH SYSTEM OFF (NOT TRANSMITTING)

| Ambient                        | -20° F | +120° F                                      |
|--------------------------------|--------|----------------------------------------------|
| $\Delta T$ from "rest" (70° F) | -90° F | +50° F                                       |
| Inner (CU) change              | 194 in | +.108 in                                     |
| Outer (AL) change              | 259 in | +.144 in                                     |
| Net Change                     | 065 in | +.036 in                                     |
| Bellows Compression            | 065 in | bullet gap increases from .070 in to .106 in |

#### CALCULATIONS WITH SYSTEM AT MAX POWER (100° F TEMP DELTA)

| Ambient                    | -20°   | °F       | +120° F  |          |  |  |
|----------------------------|--------|----------|----------|----------|--|--|
|                            | Outer  | Inner    | Outer    | Inner    |  |  |
| Temp                       | -20° F | 80° F    | 120° F   | 220° F   |  |  |
| ΔT from "rest" (70° F)     | -90° F | 10° F    | 50° F    | 150° F   |  |  |
| Net Change                 | 259 in | +.022 in | +.144 in | +.324 in |  |  |
| <b>Bellows</b> Compression | N/A    | 281 in   | N/A      | 180 in   |  |  |

Broadcasters generally assume greater insertion loss values when comparing similar coaxial lines constructed with dissimilar outer conductor metal, in our present discussion of aluminum versus copper





#### VHF ATTENUATION ALUMINUM VS COPPER

|             | FREQUENCY (MHz) | 50     | 88     | 98     | 108    | 170    | 195    | 216    |
|-------------|-----------------|--------|--------|--------|--------|--------|--------|--------|
| ATTENUATION | ALUMINUM        | 0.0490 | 0.0696 | 0.0740 | 0.0780 | 0.0999 | 0.1063 | 0.1129 |
| (dB/100 FT) | COPPER          | 0.0509 | 0.0685 | 0.0725 | 0.0762 | 0.0959 | 0.1016 | 0.1078 |

#### UHF ATTENUATION ALUMINUM VS COPPER

|              | FREQUENCY (MHz) | 470    | 526    | 582    | 638    | 694    | 750    | 806    |
|--------------|-----------------|--------|--------|--------|--------|--------|--------|--------|
| ATTENUATION  | ALUMINUM        | 0.1731 | 0.1778 | 0.2010 | 0.1967 | 0.2202 | 0.2148 | 0.2141 |
| ( dB/100 FT) | COPPER          | 0.1630 | 0.1667 | 0.1890 | 0.1849 | 0.2079 | 0.2012 | 0.1966 |

#### Conclusion

Theft Cost & Price Geometry Corrosion □Installation □

Support System

Power
Thermal
Expansion